

The LIGO Instruments

Stan Whitcomb

NSB Meeting
LIGO Livingston Observatory
4 February 2004

The Detection Challenge

Initial Interferometer Design Noise Budget

- Understanding of noise sources developed with 40 m prototype
- Limiting noise (with available technology)
 - » Seismic at low frequencies
 - » Thermal at mid frequencies
 - » Shot noise at high frequencies
- •Facility limits much lower to allow improved detectors as technology matures

Optical Configuration

Stabilized Laser

Custom-built
10 W Nd:YAG
laser—
Now a commercial
product

LIGO Optics

Substrates: SiO₂

High purity, low absorption

Polishing

Accuracy < 1 nm (~10 atomic diameters)
Micro-roughness < 0.1 nm (1 atom)

Coating

Scatter < 50 ppm
Absorption < 0.5 ppm
Uniformity <10⁻³ (~1 atom/layer)

Worked with industry to develop required technologies

2 manufacturers of fused silica
4 polishers
5 metrology companies/labs
1 optical coating company

Optics Suspension and Control

- Suspension is the key to controlling thermal noise
- Magnets and coils to control position and angle of mirrors

Core Optics Installation and Alignment

 Cleanliness of paramount importance

Seismic Isolation

 Cascaded stages of masses on springs (same principle as car suspension)

LIGO

Seismic Isolation

Commissioning Progress

Strain Sensitivity for the LLO 4km Interferometer

Science Runs as Sensitivity Improves

S3 Duty Cycle	
Hanford 4km	69%
Hanford 2km	63%
Livingston 4 km	22%*

* Limited by high ground noise

Seismic Environment at LLO

Test at MIT

- Anthropogenic ground vibrations
 - » Related to human activity mostly logging
- Microseism due to ocean waves
- Strategy for recovering full-time duty at LLO
 - » Use Hydraulic External Pre-Isolator (HEPI) system developed for AdvLIGO
 - » Prototype tested at Stanford and MIT
 - » Fabrication nearly complete, installation just beginning

Summary

- Jump from laboratory-scale to kilometer-scale interferometers has been successful
- Commissioning on track
 - » Sensitivity nearing design level
 - » Reliability and duty cycle as expected for this stage
 - » Active seismic isolation development addresses excess seismic noise at LLO, as well as Advanced LIGO requirements
- Interleaving of Science Runs with commissioning
 - » Science begins
 - » Analysis community prepares for full operation
 - Development of analysis algorithms, grid computing, ...