Suspension Design for Advanced LIGO

Norna A Robertson

Stanford University &
University of Glasgow
for the LIGO Scientific Collaboration

DCC: G040046-00-R 2004 Aspen Winter Conference on Gravitational Waves, 18 Feb 2004

Topics to be Addressed

- Suspension requirements
- GEO 600 suspension design
- Advanced LIGO suspension design
- Current status and future work

Gravitational Wave Detection

 long baseline laser interferometry between freely suspended test masses using a Michelson Interferometer

Suspension Design for GW Detectors

- Requirements of suspension system:
 - support the mirrors ("test masses") so as to minimise the effects of
 - thermal noise in the suspensions
 - seismic noise acting at the support point
 - allow a means to damp the low frequency suspension resonances (local control)
 - allow a means to maintain arm lengths as required in the interferometer (global control)

while at the same time

- not compromise the low thermal noise of the mirror
- not introduce/reintroduce noise through control loops

Thermal Noise

- Thermally excited vibrations of pendulum and violin modes of suspensions and of mirror substrates + coatings
- Important noise source in low to mid-range frequencies (10s to few 100s of Hz)

To minimise this noise source:

- use low loss (high quality factor, Q) materials for mirror and suspension – gives low thermal noise level off resonance
- in general operate away from resonances (exception violin modes)
- take advantage of significant "dilution factor" to increase
 pendulum and violin Qs above that of suspension material

Seismic Noise

- Seismic noise limits sensitivity at low frequency -"seismic wall"
- Typical seismic noise spectrum at "quiet" site

$$x(f) \approx \frac{10^{-7}}{f^2} m / \sqrt{Hz}$$

Thus large isolation required!

- Isolation required in vertical direction as well as horizontal due to cross-coupling effects
- Ultimately gravity gradient noise will limit low frequency performance: – LISA (and beyond) for low frequency detection

Seismic Noise contd

 Use multiple stages of isolation, e.g. combination of nstage isolation stack + n-stage pendulum

GEO 600 Thermal Noise Issues

- To reduce suspension thermal noise, GEO is pioneering fused silica fibre suspensions to support fused silica mirror
 - fused silica loss factor ~10⁻⁶ to 10⁻⁷, c.f. steel ~10⁻⁴
- Fibres are welded to fused silica ears, bonded to sides of mirror - effectively making

monolithic fused silica suspension

 Bonding: GEO has developed low loss hydroxy-catalysis technique - "silicate bonding"

based on work at Stanford for Gravity Probe B expt.

Summary of GEO 600 Suspension Design

- Monolithic fused silica suspension as final stage of suspension for low pendulum thermal noise and preservation of high mirror quality factor
- Triple pendulum for horizontal isolation + 2 stages of maraging steel blades for enhanced vertical isolation
- Local control for damping of all low frequency pendulum modes by 6 co-located sensors and actuators on topmost mass for sufficient noise isolation: requires modes observable at topmost mass
- Global control at penultimate mass and at mirror (electrostatic at mirror) using adjacent "identical" reaction pendulum as quiet reference

GEO Triple Pendulum Suspension

Monolithic Suspension - Assembly

Bonding of ears

Welding of fibres

GEO 600 Suspension (side view)

Reaction mass with gold plated grid for electrostatic control

Side view

LIGO Suspension/Isolation Systems

- LIGO I has more conservative design than GEO
 - single pendulum with steel wire loop, magnets for local and global control attached to back of mirror
 - 4 layer passive isolation stack
- Advanced LIGO design (in-vacuum elements)
 - multiple pendulum based on modified GEO 600 triple pendulum (The SUS system)
 - two layer active noise reduction platform (The SEI system).

target sensitivity for main optics:

$$10^{-19}$$
 m/ $\sqrt{\text{Hz}}$ at 10 Hz

$$(h = 5x10^{-23} / \sqrt{Hz})$$

c.f. typical seismic noise level of ~10⁻⁹ m/ √ Hz at 10 Hz

Projected Advanced LIGO detector performance

Advanced LIGO Suspension+ Isolation

Baseline Design for Adv. LIGO Main Mirror Suspensions

Modifications required to existing GEO design

- More stringent requirement on mirror thermal noise : use sapphire rather than silica mirror for improved
 thermal noise performance
- More stringent requirement on pendulum thermal noise:use of ribbons rather than cylindrical fibres*, to increase
 dilution factor
- More stringent requirements on isolation and on reduction of local control noise (i.e. for damping):
 - change to *quadruple* suspension, with damping at topmost mass, and three stages of enhanced vertical isolation
- Heavier mirror to reduce radiation pressure noise:increase to 40 kg
 - * alternatively use dumbbell fibres with thicker ends optimised to minimise thermoelastic damping (Willems)

Final (Lowest) Stage Design

Requirements

- noise performance 10⁻¹⁹ m/ √ Hz at 10 Hz per test mass
- highest vertical mode < 12 Hz
- violin mode fundamental frequency > 400 Hz

Parameter choices

- Fibre length as long as practicable consistent with ease of production
- Fibre cross-section as small as practicable consistent with safety factor > 3 away from breaking stress
- Penultimate mass heavy enough to achieve vertical mode <12 Hz
- Ribbons or dumbbell fibres can meet requirements

Quadruple Suspension for Advanced LIGO

Quad Pendulum inside Support Structure

Weight ~ 400 kg

Height ~ 2 m

mirror

Thermal Noise Estimate

Magenta: suspension thermal noise estimate

Red: sapphire internal noise estimate (no coatings)

Final stage: 60 cm silica ribbons 1.1 mm x 0.11 mm

Vertical bounce mode: 8.8 Hz, first violin mode: ~490 Hz

Longitudinal and Vertical Transfer Functions (MATLAB model)

Longitudinal TF

*Combine with isolation system residual noise level of $2x10^-13$ m/ $\sqrt{}$ Hz to achieve target sensitivity

Vertical TF

Black curve: with active damping

Red curve: without

First Prototype Quadruple Suspension

Prototype all-metal quadruple suspension designed in Glasgow, tested at LIGO MIT.

MIT Quad: Damped Yaw Modes

Eddy Current Damping

- Low noise alternative to active control (optical shadow sensors/coil actuators)
- Tests on triple pendulums (Glasgow & Caltech), single pendulum (Caltech)

Glasgow: Two 4x4 NdFeB magnet arrays on mass move inside Cu blocks mounted on support (not shown in picture).

Caltech: One 2x2 magnet array mounted on support sits inside lightweight Cu block attached to moving mass.

Some Eddy Current Damping Results

Experimental transfer functions (Glasgow prototype)

Bode Magnitude Diagram
From: long gnd

(gp) 96-10
96-10
-30
-40
-50

10°
Frequency (Hz)

MATLAB model

longitudinal

vertical

Current Status

- PPARC (UK) have awarded ~\$12M grant to Glasgow, Rutherford Lab and Birmingham to develop and fabricate the quadruple suspensions + analog control electronics for Advanced LIGO
- Modecleaner triple pendulum prototype assembled at Caltech. Frequencies agree well with theory and all low frequency modes damped. Delivery to LASTI May 2004

 Recycling mirror triple pendulum prototype : detailed design done in Solidworks

Future Work

- Continuing design, modeling, construction and testing.
 Some issues still to be resolved, e.g.
 - test mass material (sapphire or silica)
 - design of fibre and ear attachments (losses, strength, reliability)
 - details of damping (low noise sensors, eddy current)
- Integration with other subsystems in Adv. LIGO, and overall system integration, such as
 - interaction with seismic platform: mass loading, footprint, layout, magnetic coupling.....
 - interaction with core optics and optical layout
 - control topology
- Evolution of prototypes to be tested at LASTI (MIT):
 - all-metal "control" prototypes,
 - "noise" prototypes with fibre suspensions and "real" mirror
 - →leading to final design

Suspensions Team

- LIGO LAB: CIT: H. Armandula, M. Barton, J. Heefner, J. Romie, C. Torrie, P. Willems. MIT:P. Fritschel, R. Mittleman, D.Shoemaker LHO: B. Bland, D. Cook LLO: J. Hanson, J. Kern, H. Overmier, G. Traylor
- GEO600: GLASGOW: G. Cagnoli, C. Cantley, D. Crooks, E. Elliffe, A Grant, A. Heptonstall, J. Hough, R. Jones, M. Perreur-Lloyd, M. Plissi, D. Robertson, S. Rowan, K. Strain, P. Sneddon, H. Ward UNIVERSITAT HANNOVER: S. Gossler, H. Lueck
- STANFORD UNIVERSITY: N. Robertson (also GEO/Glasgow)
- RUTHERFORD APPLETON LABORATORY: J. Greenhalgh, I. Wilmut
- THE UNIVERSITY OF BIRMINGHAM: S. Aston, C. Castelli, D. Hoyland, C. Speake
- STRATHCLYDE UNIVERSITY: N. Lockerbie

