

http://www.ligo-wa.caltech.edu

Update: March 2004 LSC Meeting

Gregory Mendell, LIGO Hanford Observatory

Outline

- Overview/highlights since last LSC meeting.
- The Keys To The City
 - Version Control (Reproducibility)
 - Documentation

- Validation/Verification
- Statistics
- Preliminary S2 results

The StackSlide Search

- An incoherent search method that stacks and slides power to search for periodic sources. (*P. Brady & T. Creighton Phys. Rev. D61* (2000) 082001; gr-qc/9812014.)
- The periodic search is computationally bound. A hierarchical approach that combines coherent & incoherent methods is needed to optimize sensitivity.
- Sources like LXMBs with short coherence times (~ 2 weeks) require incoherent methods.
- Want to add StackSlide to the incoherent toolbag along with Hough transforms.

- A. Stack the power.
- B. Slide to correct for spindown/doppler shifts.
- C. Sum and search for significant peaks.

Highlights Since Last LSC

LIGO

- The code now runs under Condor as an executable statically linked to LAL.
- A driver script runs the code in standalone mode or creates a condor submit file for parallel jobs.
- The first version of the sliding function is finished.
- Added a peak finding algorithm; the code can find all or loudest events above a threshold.
- The code outputs the process, process params, search summary, search summary vars, stackslide summary and stackslide event tables in xml format.
- Matlab scripts exist to find an estimated UL based on loudest event (if no detection).

Overlapping Bands

Need to overlap frequency bands by twice the maximum expected width.

• XML output contains the CVS Id of the driver code.

• Need to include CVS tags to all code and scripts.

Column sele	cted: version		Hide	Show	Resize
program	version	cvs_repository			H
stackslide	<pre>\$Id: DriveStackSlide.c,v 1.17 2004/03/04 07:11:07 gmendell Exp \$</pre>	<pre>\$Source: /usr/local/cvs/lscdocs/pulgroup/stackslide/dev/b</pre>)riveSta	ckSlide	.C,V \$
4				7	
Pro	ocess Table	(Note that the XML file can be v using guild or read into Matlab	iewed .)	ł	
	LIGO-G0	40080-00-W			

LIGO Reproducibility: Documentation

• The XML output contains all the command line arguments needed to rerun the code.

y

• This includes the path and pattern used to find the data.

Reproducibility: Documentation

- In CVS: README_ComputeStackSlideSums and README_CommandLineArguments.
 - README_CommandLineArguments is in the form of a tcl script that sets each arguments along with comments describing each argument.
 - A preprocessor flag can be set to output the commandline-arguments documentation showing those used in an a job.
 - Only need to maintain this in one place in the code.
- Need to incorporate this into tex documentation.

The JKS optimal SNR for 1 SFT, averaged over M SFTs:

$$< d^2 > = \frac{A_+^2 T_{\rm SFT}}{S_h} < F_+^2 >_{\rm obs} + \frac{A_\times^2 T_{\rm SFT}}{S_h} < F_\times^2 >_{\rm obs}$$

$$A_{+} = \frac{1}{2}h_{0}(1 + \cos \iota)$$
 ; $A_{\times} = h_{0}\cos \iota$

The StackSlide Power SNR for M SFTs normalized so that the mean noise power is 1:

$$SNR = (1 + \frac{1}{2} < d^2 >)\sqrt{M}$$

Validation: Fake Pulsar Signal

StackSlide Power vs. frequency for 1–10 days of fake data.

Validation: Fake Pulsar Signal

405

Frequency (Hz)

405.01

405

0 404.99

405

Statistics: PDFs

The StackSlide Power is the sum of the Power in M SFTs:

 $\rho = P_1 + P_2 + P_3 + \dots + P_M,$

where each P has been normalized to follow an exponential distribution (for gaussian white noise) $\exp(-P)$, i.e., $2P_i$ follows χ^2 distribution with 2 degrees of freedom. Thus 2ρ will follow a χ^2 distribution with 2M degrees of freedom.

 $\mathsf{PDF}(\rho; M)d\rho = \frac{1}{(M+1)!}\rho^{M-1}e^{-\rho}d\rho$

If a signal is present, then the distribution for 2ρ is a χ^2 with 2M degrees of freedom and noncentrality parameter d^2 .

 $NCPDF(\rho; M, \langle d^2 \rangle)d\rho =$

$$C\left(\frac{2\rho}{Md^2}\right)^{\frac{M-1}{2}}I_{M-1}\left(\sqrt{2M\rho d^2}\right)e^{\frac{-2\rho-Md^2}{2}}d\rho$$

Statistics: CDFs

The false alarm rate, C_a , is set, and this determines the cutoff on StackSlide power ρ_c :

 $C_a = \int_{\rho_c}^{\infty} \mathsf{PDF}(\rho; M) d\rho.$

The false dismissal rate, C_d , is set and this determines the SNR d^2 :

 $C_d = \int_0^{\rho_c} \mathsf{NCPDF}(\rho; M, d^2) d\rho.$

The SNR can then be used to place an upper limit on the signal amplitude h_0 . For a 1% false alarm rate, 5% false dismissal rate, and averaging over all sky positions, the estimated upper limit is:

 $h_0 < 7.4 M^{1/4} \sqrt{S_h/T_{\rm obs}},$

where the fit to $M^{1/4}$ was found for 1000 < M < 3000 to be good to within a few percent.

Statistics: False Alarm Rate

Results: S2 H1 352-353 Hz Band Loudest Event

frequency	H power	width+	num_subpeaks	pwr_snr	H sky_ra	sky_dec	fderiv_l
3.52000000000000000000000000000000000000	2.567490e+00	3	0	1.209744e+02	1.3798518006662031e+00	-1.2000000000000000000e+00	-5.000000000000003e-10
3.52021111111111111e+02	1.795609e+00	14	3	8.469804e+01	1.7650470254482049e+00	1.400000000000001e+00	-6.000000000000000000000000000000000000
3.52146111111111111e+02	1.114519e+00	1	0	5.172402e+01	1.8090376531208199e+00	-9.9999999999999999922e-02	-3.000000000000000000000000000000000000
3.523333333333333331e+02	1.104465e+00	1	0	5.137996e+01	2.8659857053325672e+00	-1.100000000000000001e+00	-7.0000000000000006e-10
3.52383333333333333e+02	1.101642e+00	1	0	5.170551e+01	4.4894909177412483e+00	2.000000000000009e-01	-1.00000000000000000001e-09
3.5258277777777778e+02	1.108553e+00	1	0	5.159688e+01	2.6149185194671887e-01	7.000000000000018e-01	-4.00000000000000001e-10
3.526938888888888866e+02	1.100468e+00	2	0	5.204408e+01	1.5432230721021516e+00	-1.10000000000000001e+00	-8.000000000000003e-10
3.52825555555555552e+02	1.103327e+00	1	0	5.185260e+01	5.900000000000004e+00	8.3266726846886741e-17	-1.0000000000000000001e-09
3.52976666666666663e+02	1.109178e+00	5	0	5.255860e+01	4.4155257621318498e+00	-1.200000000000000000e+00	-4.000000000000000001e-10
3.52994444444444441e+02	1.127921e+00	2	0	5.302579e+01	4.6270392942023157e+00	1.000000000000002e+00	0.00000000000000000000e+00
5.529944444444444410+O2	1.1279210+00	2	U	5.3025790+01	4.02/03929420231570+00	1.0000000000000022+00	U.UUUUUUUUUUUUUUUUUUUUUU
	<pre>frequency 3.520000000000000000e+02 3.5202111111111111e+02 3.5214611111111111e+02 3.523333333333331e+02 3.523833333333331e+02 3.5269388888888888888e+02 3.526938888888888888e+02 3.52825555555552e+02 3.528976666666666666e+02 3.529944444444444e+02</pre>	frequency power 3.52000000000000000000000000000000000000	frequency power width 3.52000000000000000000000000000000000000	frequency power width+ num_subpeaks 3.52000000000000000000000000000000000000	frequency power width num_subpeaks pwr_snr 3.52000000000000000000000000000000000000	Image: frequency power width* num_subpeaks pwr_snr mage: sky_ra 3.52000000000000000000000000000000000000	Image: frequency power width num_subpeaks pwr_snr kky_ra sky_dec 3.52000000000000000000000000000000000000

- back-of-envelope estimate: $h_0 < 1.4e-22$
- From loudest events:
 - h₀ < 5.7e-22 (if no vetos)</p>
 - $h_0 < 4.0e-22$ (if veto 352 Hz instrument line)
 - $h_0 < 1.8e-22$ (if veto 14 bin wide event)