

The Status of Melody: An Interferometer Simulation Program

Amber Bullington Stanford University Optics Working Group March 17, 2004

G040131-00-D

Melody overview

- » Program functionality
- » New features
- Predicting interferometer behavior under thermal load with Melody
 - » Predictions of Power Recycling Cavity Sideband Gain
 - » Symmetric/Asymmetric Interferometer losses
 - » Mode Shapes
- Ref: Beausoleil et al., Model of Thermal Wave-Front Distortion in Interferometric Gravitational Wave Detectors I: Thermal Focusing, JOSA B, June 2003

• Simulate thermally loaded interferometer in Matlab

- » Any passive interferometer configuration
- » Gain (ex. recycling cavity gain)
- » Thermal lensing, deformation curvature
- » Field profiles

LIGO

• Variable parameters:

- » Input power
- » Modulation frequency, depth
- » Number of modes
- » Test mass parameters: substrate/coating absorption and scattering, curvature, etc.
- » Tilt angle

Modal Expansion for Self-Consistent Fields

- IFO fields represented as a finite set of Hermite-Gauss Modes
 - » X-arm serves as a reference for the basis
- IFO described in matrix form
 - » Operators (matrices) for aperture diffraction, wavefront curvature mismatch, thermal focusing, thermoelastic surface deformation, tilt
- Self-consistent fields

LIGO

- 1. Compute absorbed power in substrate and coatings, update thermal operators
- 2. Maximize recycled power
 - a. Independently move ITMs for maximum carrier power
 - b. Adjust beamsplitter for dark port condition
 - c. Adjust recycling mirror for maximum recycled carrier power
- 3. Recompute the intracavity fields and repeat steps 1 and 2 until the recycled power has stabilized to the desired accuracy

• Scripts with relevant interferometer parameters

- » Test mass curvature and substrate absorption from G. Billingsley's website
- » Relevant mode cleaner configurations also included
- Pre-computed file creation more user friendly
- Field surface plots and beam cross-sections
 - » Carrier, sidebands plotted directly
 - » Phase camera emulator (next release)
- Test mass tilt

LIGO

• Gravitational wave response

LIGO PRC Sideband Characteristics

- Melody simulates an optimized IFO
- Too little thermal loading predicted for LHO 2k, LLO 4k
- Too much thermal loading causes early SB rollover in LHO 4k
 - » Peak gain at 2.5 W input power
 - » Melody predicts peak gain at 11 W input power
- Possible causes:
 - » Optic curvature
 - » Asymmetric Losses in each arm

6

LIGO Symmetric vs. Asymmetric Losses

LIGO

Dark Port Sidebands – LHO 4k

LHO 4k Lower Sideband, 1W Input Power

LIGO

Phase Camera Emulator

-5

0

X [mm]

5

10

LIGO

10

Phase Camera Emulator - Tilt

LIGO

- Melody uses Hermite-Gauss modes to represent IFO fields
- New features can be used to compare IFO behavior to simulations
- Recycling cavity gain, mode shapes, thermal lensing, response to asymmetric loss, etc. can be simulated
- Next release ...
 - » Phase camera emulator
 - » Cross section plots
 - » Astigmatism
 - » Thermal Compensation
- And beyond ...
 - » Thermal loading with inhomogeneous absorption