Update on White-light Interferometry Experiment

Stacy Wise, V. Quetschke, A. Deshpande, G. Mueller, D. Reitze, D. B. Tanner, B. Whiting

Department of Physics University of Florida

March 2004

The Motive

Bandwidth limited by Gain: (T = Intensity Transmittance)

 $B \propto T_{
m ligo-g040187-00-z} \; 1/T$

The Problem/The Idea

LIGO-G040187-00-Z

The Concept

- high efficiency (95%) gratings with 1500 gr/mm
- 10 cm perpendicular distance
- incident angle of 43 degrees
- 1.064µm diode laser with 7 GHz continuous f tuning

. - p.7/17

Table-top experiment at UF

Grating-Enhanced Mach-Zender IFO

Point A

. – p.10/17

Grating tests

 $L(\lambda)$ is as predicted

Grating equation $sin(\beta(f)) = \frac{c}{df} - sin(\alpha)$

LIGO-G040187-00-Z

$L(\lambda)$ OK, but $\Phi(\lambda)$ is not!

Mach-Zender Output Intensity

evidence that phase shifts have same frequency-dependence in each arm

LIGO-G040187-00-Z

Phased and Confused

Evidently,
$$\Phi(\lambda) \neq \frac{2\Pi L(\lambda)}{\lambda}!$$

Pulse-Compressors use same parallel gratings to affect group velocity of pulse:

$$\frac{\partial \Phi}{\partial \omega} = \tau_g = \frac{L(\omega)}{c} \to \Phi_g = \int_{\Delta \omega} \frac{L(\omega) d\omega}{c}?$$

E. Treacy, *Optical Pulse Compression With Diffraction Gratings*, IEEE J. Quant. Elec. Vol QE-5, No. 9, 1969

LIGO-G040187-00-Z

. – p.13/17

Phased and Confused

Schreier et. al. \rightarrow gratings cause lateral and angular shift

F. Schreier et. al., Beam displacement at diffractive structures under reso-

nance conditions, Opt. Lett. Vol. 23, No. 8, 1998

LIGO-G040187-00-Z

. - p.14/17

Next Step

Rigorous calculation of grating effect

- calculate E(x, z, t) via Huygen's integrals
- consider Gaussian instead of plane waves
- consider effect of grating resolution
- different grating profiles
- include laser bandwidth

The Concept

Superior bandwidth where vero stope of -2/LC phase < standard phase.