

Results from LIGO's Second Search for Gravitational-Wave Bursts

Patrick Sutton

LIGO Laboratory, Caltech, for the

LIGO Scientific Collaboration

Outline

- Gravitational Wave Bursts: Goals
- Un-triggered Searches
 - » Scan entire data set looking for coincident signals in each detector
 - » Methodology, procedure
 - » Improvements since first search
- Triggered Searches
 - » Intensive examination of data around times of observed astronomical event
 - » Methodology, procedure
 - » Example: results for GRB 030329
- Summary & Outlook

Bursts Analysis: Targets

- Catastrophic events involving solar-mass compact objects can produce transient "bursts" of gravitational radiation in the LIGO frequency band:
 - » core-collapse supernovae
 - » merging, perturbed, or accreting black holes
 - » gamma-ray burst engines
 - » others?
- Gravitational waves could provide probe of these relativistic systems.

Bursts Analysis: Philosophy

- Precise nature of gravitational-wave burst (GWB) signals typically unknown or poorly modeled.
 - » Make no astrophysical assumption about the nature and origin of the burst: we do not use templates in our searches!
 - » Search for generic GWBs of duration ~1ms-1s, frequency ~100-4000Hz.

possible supernova waveforms T. Zwerger & E. Muller, Astron. Astrophys. *320* 209 (1997)

Bursts Analysis: Goals

- Detect or set upper limit on the rate of detectable GWBs.
 - » Detect or set upper limit on strength of GWBs associated with specific astronomical events (triggered search).
- Interpret in terms of source and population models.
- Establish methodology and validate procedures.

Un-triggered searches for GWBs in the LIGO S2 data

Un-triggered Search: Methodology

- Count number of potential GWBs in the data
 - » Require GW candidates to be coincident in all detectors
- Estimate false alarm rate due to background noise
 - » Repeat coincidence test with artificial time shifts
 - » Set thresholds for search such that expected $N_{background} < 1$
- Possible detection if excess of coincident events compared to that expected from background.
 - » If no significant excess then set upper limit on rate of detectable GWBs.
- Estimate efficiency to real GWBs
 - » Add simulated signals to the data
- Tune pipeline using 10% subset of data: "playground"
 - » Playground data not used for final GWB search; avoids bias

Un-triggered Analysis Procedure

Data Quality & Conditioning

- » Discard data that do not pass quality criteria (eg, noise levels) - few %
- » High-pass filtering
- » Base-banding
- » Line removal
- » Whitening using linear predictor filters
- » S1: Lost ~2/3 of data to quality cuts; non-adaptive conditioning led to more ringing, non-white data.

Burst Signal Identification

- » Multiple detection codes:
 - TFClusters (freq domain)
 - Excess Power (freq domain)
 - WaveBurst (wavelet domain)
 - BlockNormal (time domain)
- » Adaptive thresholds to handle non-stationary noise
- » Tuned for maximum sensitivity at fixed false alarm rate
- » S1: Some non-adaptive code, less tuning.

Example: TFClusters

- Threshold on power in the time-frequency plane.
- "Events" are clusters of pixels with improbably large power.

J. Sylvestre, Phys. Rev. D 66 102004 (2002)

Coincidence

- Require simultaneous detection in each IFO (typically within ~30ms)
- » Require frequency match
- » Estimate rate of accidental coincidence of noise fluctuations (false alarms) using artificial time shifts
- » S1: 500ms coincidence window (!)

Cross-Correlation Test

- » Test waveform consistency between detectors
- » Require cross-correlation of data from each pair of detectors exceed threshold:

$$r_{k} = \frac{\sum_{i} (x_{i} - \overline{x})(y_{i+k} - \overline{y})}{\sqrt{\sum_{i} (x_{i} - \overline{x})^{2}} \sqrt{\sum_{i} (y_{i+k} - \overline{y})^{2}}}$$

- » Strong reduction of false alarm rate (~99%) with no loss of efficiency
- » Entirely new since S1

Detection / Upper Limit

» Compare number of coincident events to that expected from background noise

[G. Feldman & R. Cousins, Phys. Rev. D 57 3873 (1998)]

- » Significant excess is possible detection
- » No excess ⇒ upper limit

Simulations

- » Add simulated GWBs to IFO control signals or output data
- » Used to estimate sensitivity to real GWBs & to tune analysis (eg: coincidence windows).

Ex: Gaussian-modulated sinusoids

WaveBurst search code (wavelet based).

Injected Signals:

Amplitude Measure:

$$h_{rss} = \sqrt{\int_{0}^{\infty} |h(t)|^2 dt}$$

LIGO-G040232-02-Z

Upper Limits

- Upper limit on rate is a function of signal strength.
- LIGO Science Run 1:
 - » rate: R ≾ 1.6/day
 - » sensitivity*: h_{rss} ≥ $4x10^{-19}$ Hz^{-1/2}
- LIGO Science Run 2:
 - » Analysis in final stages.
 - » Expected rate: R ≤ 0.2/day
 - » Expected sensitivity*: $h_{rss} \geq O(10^{-20}) Hz^{-1/2}$

^{*} averaged over sky directions, signal polarization

gr-qc/0312056, Phys. Rev. D (to appear)

Search for the gravitational-wave signature of GRB030329

Externally initiated searches for gravitational waves

- Many events which may produce GWBs are also visible in EM or neutrino bands
 - » supernovae
 - » gamma-ray bursts (GRBs)
- Opportunity for targeted coherent search for gravitationalwave counterpart
 - » Concentrate on one extraordinary event: GRB030329

Gamma-Ray Bursts

Known:

- Bright, transient bursts of gamma rays
- Observed at rate ~1/day
- Duration: 0.01-2s (short), 2-100s (long)
- "Afterglow" seen in other wavelengths (long-duration GRBs)
 - cosmological distances (z~1)
 - highly energetic (~10⁵¹ergs)
 - beamed (1 GRB visible out of every ~500)

Thought:

- Central engine is solar-mass accreting black hole, perhaps resulting from hypernova/collapsar or compact binary inspiral.
 - » Violent, strongly relativistic processes may dump significant fraction of a solar mass into gravitational waves in the LIGO band
- P. Meszaros, Ann. Rev. Astron. Astrophys. 40 (2002)

Fireball Shock Model (long GRBs)

GRB030329: "Monster GRB"

- Detected March 29 2003 by HETE-2 & Wind satellites
- One of closest ever seen with known distance
 - » z=0.1685
 - » d=800Mpc
- Provides strong evidence for supernova origin of long GRBs.
- LIGO was operating!
 - » Hanford 2km & 4km
 - » look for GWB!

http://cfa-www.harvard.edu/~tmatheson/compgrb.jpg

Analysis Methodology

- Use cross-correlation of data from pairs of detectors
 - » similar to cross-correlation test used in un-triggered search
- Compare cross-correlation values around time of electromagnetic trigger ("signal region") to values at other times ("background region")
 - » possible detection if cross-correlation around trigger time crosses threshold
- L. Finn, S. Mohanty, J. Romano, Phys. Rev. D 60 121101 (1999)
- P. Astone et al, Phys. Rev. D 66 102002 (2002): NAUTILUS & EXPLORER + 47 GRBs from BeppoSAX: $h_{rms} < 6.5 \times 10^{-19}$ at 95% confidence.

Relative delay between GWB and GRB is predicted to be ~O(s)

```
signal region: [t_0-120s, t_0+60s]
```

background region: $[t_0-12000s, t_0+4000s]$

(excluding signal region)

- GWB duration predictions vary from O(10ms) to O(1s)
 - » Concentrate on short bursts: ~1-200ms

Gamma-ray flux measured by HETE satellite (5-120 keV band)

http://space.mit.edu/HETE/Bursts/GRB030329/

http://space.mit.edu/HETE/Bursts/GRB030329/

http://space.mit.edu/HETE/Bursts/GRB030329/

Externally Triggered Analysis Procedure

Data Selection:

- » Background: used to tune pipeline, set thresholds ("playground")
- » Signal: look for GWB
- Data from signal and background region goes through same pipeline

Signal Injection:

- » May add simulated signals to background data
- » Use to measure detection efficiencies, tune analysis

Data Conditioning:

- » whiten data
- » remove lines (coherent features)

Cross correlation of data streams
 x, y at time τ, offset Δt, integration time T:

$$S(\tau, T) = \int_{-T/2}^{T/2} dt \, x(\tau + t) y(\tau + t + \Delta t)$$

- Scan over values:
 - » start time τ : [-120,60]s around GRB time
 - » integration length T: [4,128]ms for short signals
 - » offset Δt : average over [-5,5]ms to allow for calibration uncertainties (ideally $\Delta t = 0$)

External Trigger Data (2 IFOs) background region signal region signal injection filtering & adaptive conditioning non-parametric, coherent, multiinterferometer GW detection algorithm false alarm rate event strength threshold cut detection empty box or efficiency candidates detection or upper limits on GWB strength

LIGO-G040232-02-Z

Cross-Correlation Power

Cross correlation for each start time τ, integration length T:

LIGO-G040232-02-Z

Sutton APS 2004/05/04

Signal Anatomy (Simulated)

Color coding: "Number of variances above mean" [ES']

False alarm rate:

- » Use background crosscorrelations to estimate false alarm rate vs signal strength threshold
- » Set threshold so false alarm rate is < 0.1/(180s) (10% false alarm probability)

False Alarm Rate Limit

- Threshold on cross-correlation strength:
 - » Background region: simulated signals seen or missed
 - » Signal region: No GWBs or potential detection.

GRB 030329 Results

- Detection or upper limit:
 - » GRB 030329: no candidates, so use simulations to set upper limit on GWB strength

Efficiency Measurements (Sine-Gaussians)

GWB Energetics

• Energy in GWB (distance d from source):

$$E_{GW} = \left(\frac{2\pi^2 c^3}{G}\right) d^2 \int_0^\infty f^2 |\tilde{h}(f)|^2 df$$

- Strain h(f) depends on signal model:
 - » $d \approx 800 Mpc$ (known)
 - » For h(t) sine-Gaussian at ~250 Hz, h_{rss} ~ $6x10^{-21}Hz^{-1/2}$
- Minimum energy in LIGO band to have been detectable:

$$E_{GW} \gtrsim 10^5 M_{\odot}$$

PRELIMINARY

Future Sensitivity

Energy in GWB (distance d from source):

$$E_{GW} = \left(\frac{2\pi^2 c^3}{G}\right) d^2 \int_0^\infty f^2 |\tilde{h}(f)|^2 df$$

- Best-case scenario:
 - » Closest GRB with known distance: d ⇒ 38Mpc
 - » Initial LIGO design sensitivity: $h_{rss} \sim 2x10^{-22}Hz^{-1/2}$
- Minimum energy in LIGO band to be detectable:

$$E_{GW} \gtrsim 0.1 M_{\odot}$$

Summary

- LIGO searches for gravitational wave bursts have begun:
 - » Targets: generic short duration (<1s) transients with power in LIGO's sensitive band of ~100-2000 Hz
 - » Un-triggered search scans entire data set looking for coincident signals in each detector
 - » Triggered search involves intensive examination of data around times of observed astronomical event (eg, GRBs)

Summary: Un-triggered Search

- Many improvements in both data quality and analysis sophistication since first search:
 - » Better data conditioning
 - » Better time resolution
 - » Use multiple GWB detection codes
 - » Cross-correlation test of candidate GWBs
- Analysis in final stages:
 - » Expect nominal x10 improvement in rate upper limit and amplitude sensitivity.

Summary: Triggered Search

- Demonstrated a cross-correlation based search for GWBs associated with GRB030329:
 - » Observed no candidates with gravitational-wave signal strength larger than a pre-determined threshold
 - » Frequency dependent sensitivity of our search at the detector was $h_{rss} \sim 10^{-20} \ Hz^{-1/2}$
 - » May achieve sensitivity to sub-solar-mass GWB energies with initial LIGO detectors.

In Development

- Un-triggered modeled searches using optimal filtering (black-hole ringdowns, supernovae)
- Collaborative searches with TAMA300, GEO600 interferometers, AURIGA resonant mass detector
- Collaborative GRB-triggered search with HETE