

Sensing and control of the Advanced LIGO optical configuration

SPIE conference at Glasgow

June 23, 2004

O. Miyakawa, Caltech

B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, S. Kawamura, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, A. Weinstein

Optical configuration for Gravitational wave interferometer

Signal and power enhancement using

Fabry-Perot cavity in each arm

 Gravitational wave detection using Michelson interferometer

LIGO

Advanced LIGO optical configuration

- LIGO:Power recycled FPMI
 - » Optical noise is limited by Standard Quantum Limit (SQL)
- AdvLIGO:GW signal enhancement using **Detuned Resonant Sideband Extraction**
 - » Can overcome the SQL \rightarrow QND detector
 - » Two dips by optical spring, detuning

Caltech 40 meter prototype interferometer

Objectives

- Develop lock acquisition procedure of suspended-mass detuned Resonant Sideband Extraction (RSE)
- Characterize noise mechanism
- Verify optical spring effect
- Develop readout scheme

for Advanced LIGO and other future GW detectors

LIGO- G040310-00-R

Sensing and control, SPIE conference, June 2004

Length sensing and control

Signal extraction for AdvLIGO

- Arm cavity signals are extracted from beat between carrier and f_1 or f_2 .
- Central part (Michelson, PR, SR) signals are extracted from beat between f₁ and f₂, not including arm cavity information.

5 DOF for length control

Signal Extraction Matrix (in-lock)

Disturbance by sidebands of sidebands

- Sidebands of sidebands are produced by two series EOMs.
- Beats between carrier and $f_2 + f_1$ disturb central part.

Port	Dem. Freq.	L ₊	L_	I ₊	I_	l _s
SP	f ₁	1	-1.4E-8	-1.2E-3	-1.3E-6	-6.2E-6
AP	f ₂	1.2E-7	1	1.4E-5	1.3E-3	6.5E-6
SP	$f_1 \times f_2$	7.4	-3.4E-4	1	-3.3E-2	-1.1E-1
AP	$f_1 \times f_2$	-5.7E-4	32	7.1E-1	1	7.1E-2
PO	$f_1 \times f_2$	3.3	1.7	1.9E-1	-3.5E-2	1

LIGO

Sensing and control, SPIE conference, June 2004

Mach-Zehnder on 40m PSL to eliminate sidebands of sidebands

LIGO- G040310-00-R

LIGO

Sensing and control, SPIE conference, June 2004

Lock Acquisition of Detuned RSE

- Central part: not disturbed by lock status change of arm cavity
- Find primary signal not disturbed by the other two DOFs
- Find secondary signal not disturbed by the residual DOF

- Arm cavities: not disturbed by locked central part
- Lock each arm cavity independently
- Switch control servo to common/differential control

I signal with double demodulation

- Good I signal when I and I is locked
- No good $I_{\rm s}$ signal once $I_{\rm s}$ and $I_{\rm s}$ start moving

I signal with double demodulation

- Good I signal when I and I is locked
- No good $I_{\rm s}$ signal once $I_{\rm s}$ and $I_{\rm s}$ start moving

Looking for good signal for lock acquisition

- Unfortunately, no way to lock central part directly using the original double demodulation
- Dither locking for I signal Laser
- Divide signal by inside power
 - » Good cancellation of power recycling

$$\Delta V_{l-} = \frac{d}{d l_{-}} \left(\frac{V_{AP}}{V_{PO}} \right)$$
$$= \frac{V'_{AP} V_{PO} - V_{AP} V'_{PO}}{V_{PO}^{2}}$$

I_ signal with dither

I₊ signal with I₋ lock

- Zero crossing point of I_{+} corresponds with movement of I_{s}
- Distance between PRM and SRM is kept
- Good I_{+} signal obtained with all I_{s} movement

LIGO

$I_{\rm s}$ signal with $I_{\rm and}$ and $I_{\rm and}$ lock

• Good *I*_s signal can be extracted

LIGO

Summary

- Optical configuration for AdvLIGO being developed at 40m prototype interferometer
- Sidebands of sidebands: eliminated by M-Z interferometer
- Ready to try lock acquisition
- Lock acquisition: promising with dither lock

Hope we succeed in locking detuned RSE very soon!