

Modeling of Advanced LIGO with Melody

Amber Bullington Stanford University SWG-Optics Session August 18, 2004

G040372-00-Z

Melody

- » Simulate thermally loaded interferometer via modal expansion of the electric field
- » Variables: Input power, Tilt, Material parameters
- » Output: Mode profiles, Thermal distortions, Gain
- Advanced LIGO Mode Cleaner
 - » Updates to the model
 - » Simulations of the AdLIGO mode cleaner
- Inhomogeneous absorption
 - » Numerical model of absorption
 - » Study interferometer response to absorption centers

Mode Cleaner Model

Proper mode cleaner representation

- » Model a curved optic with an arbitrary incidence angle
- » More general interferometer configurations

• Curvature mismatch

LIGO

- » Difference in curvature between incident field and optic
- » Proper matching of field curvature with eigenmode curvature

Optic

Incident Field

Thermal Loading I

4

200

- Thermal loading causes curvature mismatch
 - **Thermal Lensing 》**

0.6

0.4

Thermal Loading II

Inhomogeneous Absorption

- Modified Femlab code by R. Lawrence ('Numerical Optic')
 - » Inhomogeneous absorption in coatings and substrate
 - » Thermal profiles for Melody
- Simulation features

- » Specify a 3d array of absorption maps
- False map generators
 - Single defect
 - Various spatial frequencies with a striped or checkerboard pattern
- Preliminary Results
 - » ITM AR coating defect: spot with 2x absorption
 - » Impact on Power Recycling Gain
 - » Compare on center and off center cases
 - » Run with LIGO I parameters (bug in AdLIGO script)

Defect Simulation Parameters

60

- Compare response of sidebands in recycling cavity
 - » 'Pseudolock' for the carrier, note sideband behavior
 - Variation in PRC gain, optimum operating point
- Parameters

- » Defect size = waist/3
- » Defect centered on optic or located at (x, y) = (waist/3, waist/3)
- Homogeneous coating absorption = 0.5 ppm
- Spatial Filter
 - PRC gain variation for TEM₀₀ mode only vs. all modes included in calculation

136 modes	SB gain decrease w/ spatial filter	SB gain decrease w/o spatial filter
Upper SB, Center defect	8.3%	6.3%
Lower SB, Center defect	9.1%	6.3%
Upper SB, Off-Center defect	17%	12%
Lower SB, Off-Center defect	7.1%	1.6% increase ?

• Center defect: 1 W decrease in optimum operating point

LIGO

• Off-center defect: slight increase in optimum operating point for lower sideband

136 modes	SB gain decrease w/ spatial filter	SB gain decrease w/o spatial filter
Upper SB, Center defect	3.7%	2.1%
Lower SB, Center defect	2.9%	3.4% worse?
Upper SB, Off-Center defect	1.25%	.48%
Lower SB, Off-Center defect	1.6%	1.3%

• No significant shift in optimum operating point

LIGO

• Overall, smaller changes than for fused silica

LIGO Mode Deformation, Off-Center Defect

- Thermally loaded mode cleaner has astigmatic thermal lens
- Fused Silica TMs more susceptible to inhomogeneous absorption
- Centered defect has larger impact on optimum operating point
- Continued development of absorption model, implementation with signal recycling