

Institute of Applied Physics of the Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia

IAP/UF/LIGO Research Collaboration: Status and Prospectives

Efim Khazanov, Ilya Kozhevatov, Anatoly Malshakov, Oleg Palashov,

David Reitze, Anatoly Poteomkin, Alexander Sergeev, Andrey Shaykin, Victor Zelenogorsky

LIGO-G040373-00-Z

Topics of IAP/UF/LIGO Research

- 1. Methods and instruments for remote *in situ* monitoring of weak distortions in LIGO Core Optics
- 2. Instrument for high accuracy preliminary core optics characterization using white light phase-modulated interferometry
- 3. Study of high power effect in Faraday isolators

Topics of IAP/UF/LIGO Research

- 1. Methods and instruments for remote *in situ* monitoring of weak distortions in LIGO Core Optics
- 2. Instrument for high accuracy preliminary core optics characterization using white light phase-modulated interferometry
- 3. Study of high power effect in Faraday isolators

Methods and instruments for remote *in situ* monitoring of weak distortions in LIGO Core Optics

- 1. Scanning Nonlinear Hartmann Sensor
- 2. Scanning Linear Hartmann Sensor
- 3. White-Light Phase-Modulated Interferometer

Remote in situ monitoring of weak distortions emerging under auxiliary laser heating. Setup.

- 1 WLPMI
- 2 NHS and PIT
- Optical sample bulk heating by the fundamental or second harmonic of Nd:YAG laser at a power of 10-20 W
- Surface heating with the use of a CO₂ laser at power of several Watts
- Inducing contamination of a small region (characteristic size of 20-100 micron) on the optical element's surface and focusing of low-power laser radiation (<100 mW) on it

NHS: Idea

In linear electrodynamics the major limitation to measure wave front deviations angles comes from a finite size of the focal spot . $h=\lambda/100$ is achieved by an accurate measurement of the transverse beam distribution

How to get $\lambda/1000$? Use self-focusing to decrease the size of the focal spot. At $P=P_{critical}$ a $\rightarrow 0$ and is determined by nonlinear medium properties

NHS: Self-Focusing Points

difraction limited diameter

NHS: Results with Moving Sample

Of all the tested substances, the minimum size of a self-focusing point is in benzene, i.e. 5 μ m at the length of a nonlinear cell of 60 cm, which results in the precision of wave front inclination measurements $\lambda/3000$.

Scanning Linear Hartmann Sensor

Scheme of Linear Scanning Hartmann Sensor

Wavefront distribution when a sample made of BK7 glass was heated by a CO₂ laser beam with different power

"White Light" In Situ Measurement Interferometer (WLISMI)

Standard interferometers

Measurement of optical length of air spacing between two surfaces.

In profilometers one of them is a sample surface, and the other is a reference surface.

The problem of precise measurement of phase in the interferogram is solved by phase modulation according to a known time law.

Newly developed interferometers

The proposed method relies on measurements of the phase of interferogram of radiation reflected **from two surfaces of one sample** under study.

The precise phase measurements are ensured by the **modulation** of the probing radiation **spectrum**.

The method provides a two-dimensional pattern of a sample's **optical thickness distribution** simultaneously over the whole aperture.

The method is applicable to **remote testing** of optical elements with flat, spherical and cylindrical surfaces, and also with a wedge between them.

"White Light" In Situ Measurement Interferometer. Experimental setup

- 1 broad band light source;
- 2 spectrum modulator;
- 3, 5, 8 lenses
- 4 sample;
- 6 semitransparent mirror
- 7 wave front shaper;
- 9 spatial filter
- 10 CCD camera;
- 11 PC

"White Light" In Situ Measurement Interferometer. Experimental setup

- 1 broad band light source;
- 2 spectrum modulator;
- 3, 5, 8 lenses
- 4 sample;
- 6 semitransparent mirror
- 7 wave front shaper;
- 9 spatial filter
- 10 CCD camera;
- 11 PC

White Light *In Situ* Measurement Interferometer Phase Map

- Sensitivity:
- Diameter of the sample under study:
- Number of points measured simultaneously:
- Measurement time:
- Time of data processing:
- Output data:

better $\lambda/1000$ up to 100 mm 250 x 340 no more than 4 s no more than 5 s 24-bit graphic file

CCD camera image of optical sample heated by CO₂ laser

Place of heating beam

Thickness - 15 mm Diameter - 85 mm

Dynamical monitoring of BK7 glass sample heating – "cross writing"

CO₂ laser power=300 mW

 CO_2 laser beam diameter =1mm

Heating duration = 3 min

Sample: length 20 mm, aperture 35mm

Next steps to do:

- to confirm experimentally the feasibility of remote (*in situ*) high sensitivity monitoring of thermal distortions in core optics components using several complementary techniques:
- white-light phase-modulated interferometry
- scanning linear Hartmann sensing in through-passing geometry
- scanning linear Hartmann sensing in reflective geometry
- to separate volume and surface distortions by simultaneous measurements using several techniques
- to install the instruments at a LLO end station

Next Steps

Wavefront distribution when a sample made of BK7 glass was heated by a CO₂ laser beam with different power

Separation of volume and surface distortions by simultaneous measurements using several techniques

Hartmann sensor measures

$$\left(\frac{dn}{dT} + (n-1)\left(\frac{dL}{dT}\frac{1}{L}\right)\right)L \cdot \Delta T$$

1 Interferometer measures

$$\left(\frac{dn}{dT} + n\left(\frac{dL}{dT}\frac{1}{L}\right)\right)L \cdot \Delta T$$

How to install WLISMI in LIGO-I interferometer?

Topics of IAP/UF/LIGO Research

- 1. Methods and instruments for remote *in situ* monitoring of weak distortions in LIGO Core Optics
- 2. Instrument for high accuracy preliminary core optics characterization using white light phase-modulated interferometry
- 3. Study of high power effect in Faraday isolators

Large aperture white-light phase-modulated interferometer (WLPMI) for preliminary control of LIGO Core Optics

- 1 sample
- 2 optical table
- 3 damping mount
- 4 reference plate
- 5 collimating lens
- 6 beam splitters
- 7 spatial filter
- 8 lenses
- 9 fiber bundle
- 10 spectral modulator
- 11 white light source
- 12 aperture
- 13 He-Ne laser
- 14 projection lens
- 15 CCD-camera
- 16 computer
- 17 control unit

Large aperture white-light phase-modulated interferometer (WLPMI) for preliminary control of LIGO Core Optics

White light source

Beam splitters

Collimating lens

Reference plate

Lens

Damping mount

Sample, 25 cm diameter

White Light Measurement Interferometer for preliminary Core Optics control

Root-mean-square accuracy
Spatial frequency resolution
Maximum processing area
Measuring and processing time for a 240 x 320 pixel pattern

\(\lambda/2000\) (\(\lambda/6000\) over 100mm!)
1 cm⁻¹ to 1000 cm⁻¹
270 mm diameter
< 10 min

Next steps to do:

- •By optimizing performance (hardware and software based noise removal) we will achieve $\lambda/2000$ over 270 mm aperture
- Implementation of spherical surface measurement mode (new wave front shaper and absolute calibration strategy)
- Ready to install at LIGO sites

Topics of IAP/UF/LIGO Research

- 1. Methods and instruments for remote *in situ* monitoring of weak distortions in LIGO Core Optics
- 2. Instrument for high accuracy preliminary core optics characterization using white light phase-modulated interferometry
- 3. Study of high power effect in Faraday isolators

Next steps to do:

- Search for solid-state material suitable for adaptive thermal lens compensation in high-power FI unit
- Manufacturing and experimental testing of FI with both depolarization compensation and adaptive thermal lens compensation
- Experimental demonstration of total loss in the fundamental transverse mode corresponding to specification at Adv.LIGO power level
- Investigation of FI designs subjected to transient states and assessment of their performance with respect to design specifications
- • Experimental testing of adaptive thermal lens compensation in non stationary regimes