

S3 Glitch Updates

Laura Cadonati for the burst/inspiral glitch working group LSC meeting – Hanford, August 17 2004

Lessons learned from S2 moving on to S3

- pursuing loudest event candidates, interesting discoveries for detector characterization
 - » example: AS_Q gain dips (See Gabi's talk)
- PEM vetos matter
 - » focus on H1-H2 correlations
- Except for outliers, different algorithms see different glitches
 - » need to explore use of time-frequency methods on auxiliary channels
- Veto figure of merit
 - » which one is used is not critical, as long as we choose one

Strategies for S3 veto search

UPPER LIMIT MODE

- Continuing "old fashioned" veto searches: statistical correlations between transients on auxiliary channels and burst/inspiral candidates on AS_Q → "upper limit mode"
- Identify selected features in the playground, using loudest events, to be extended to the full dataset
 - » H1-H2 correlations and PEM channels

How fast a response can we provide?
Can we train for an online analysis for S4?

DETECTION MODE

- After-the-fact veto for candidate events
 - » checklist for event candidates

Auxiliary Channel Glitch Search

- Archive for S3 glitches (A. Di Credico)
 - » Production is done by authors/users
 - » More than data: links to documentation, results based on those data and records of choices made
 - » Fruitful collaboration between burst and inspiral group

http://lancelot.mit.edu/ldas/dc/S3GlitchRuns.html

- Glitches produced on S3 PG data by:
 - » glitchMon (Author: M. Ito Production: N. Christensen, A. Di Credico)
 - several triggers available, used in inspiral search (burst so far used online triggers)
 - looking for optimal parameter settings?
 - » PTmon (Author & Production: N. Zotov)
 - ready for prime time
 - » kleineWelle (Authors: L. Blackburn, E. Katsavounidis Production: P. Richerme)
 - used in burst search
 - » waveMon (Author:S. Klimenko Production: K. Franzen)
 - used in burst search

How the S3 online triggers have been used

- completed scan of glitchMon and PSLmon triggers on AS_Q vs auxiliary channels (P. Richerme)
 - » completed as of June LSC
 - » in particular:
 - H1: AS I, POB I
 - H2: AS_I, POB_Q, MICH_CTRL
 - L1: AS_I Anomaly in online triggers on REFL_Q
- Inspiral triggers from online production used with offline glitch production to start playground search (although a more comprehensive offline production is used now) (H. Bantilan, N. Christensen, G. Gonzalez)
- No Burst ETG triggers were produced online

Status of offline S3 glitch production/analysis

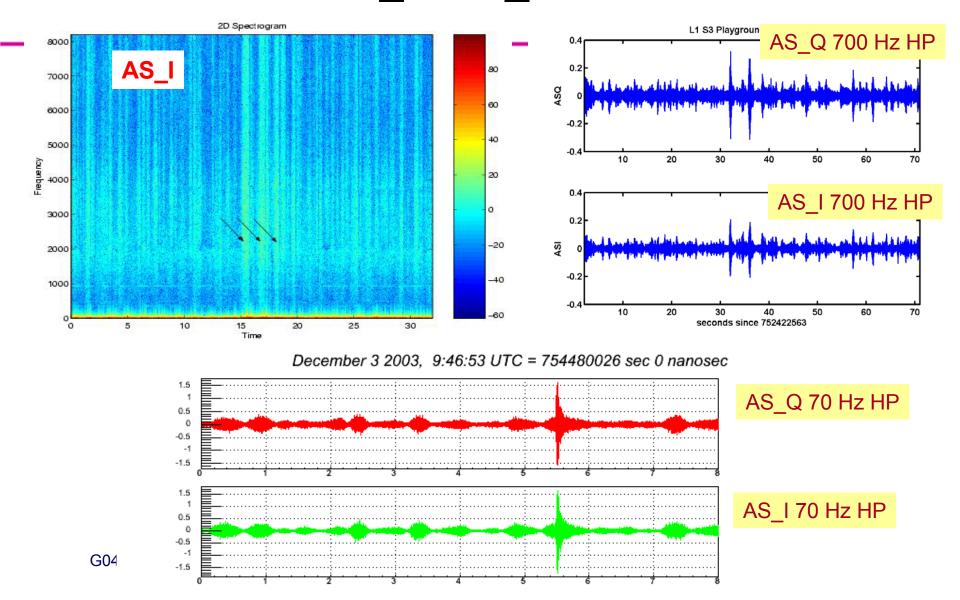
glitchMon triggers

- » validation with software injections using DMTgen (A. Di Credico)
- » existing production (A. Di Credico, N. Christensen) is being used for:
 - S3 inspiral veto search (H. Bantilan, N. Christensen, G. Gonzalez)
 - rate comparison/stability studies in the S3 playground (A. Dawson)

WaveMon triggers

- » validated with software injections, addressed open question on effective deadtime of WaveMon triggers (K, Franzen, S. Klimenko)
- » currently in production mode (K. Franzen)

kleineWelle triggers


- » run on AS_Q and various aux channel (L . Blackburn, P. Richerme)
- » existing production used for burst veto studies (P. Richerme)

Interferometric auxiliary channels

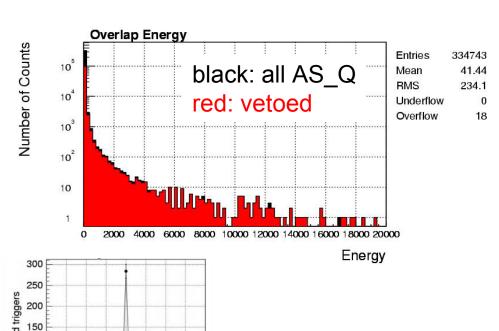
L1 burst/inspiral veto search: AS_Q/AS_I correlations

L1 burst/inspiral veto search: AS_Q/AS_I correlations

What is it? oscillator phase noise -> see Gaby's talk

Possible inspiral veto (conditional on AS_I/AS_Q coincidence and amplitude ratio above 700Hz) → Gaby's talk

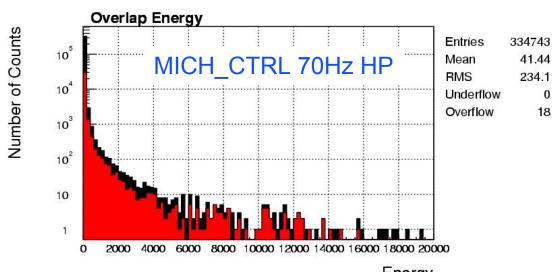
100


lag [s]

Seen in burst investigation too. e.g.: kleineWelle studies:

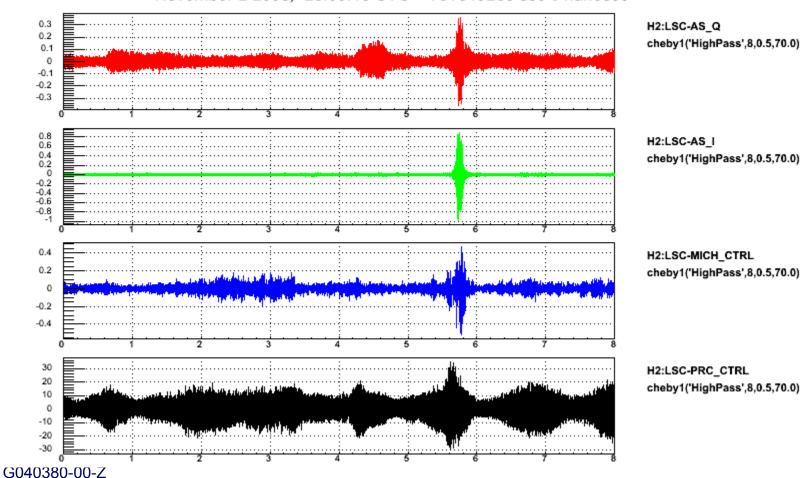
all events >4 σ veto efficiency =31% use percentage = 91%

AS_I and AS_Q energy>2000 veto efficiency =61% use percentage = 76%


G040380-00-Z

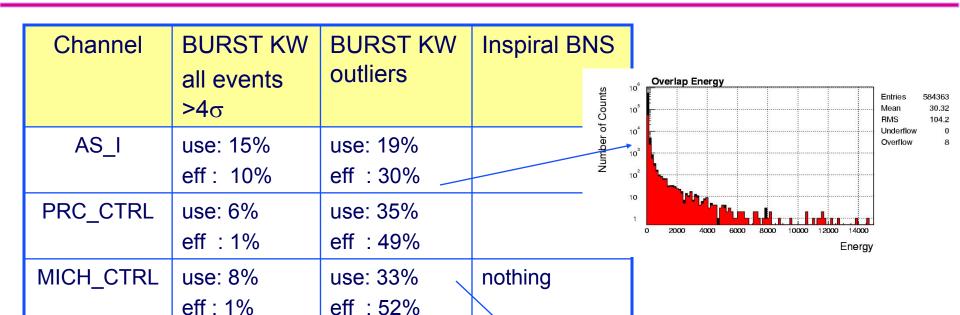
more L1 results from KleineWelle

Channel	all events >4s	energy>2000
L1	use percentage: 49.48%	use percentage: 75.76%
LSC-MICH_CTRL	veto efficiency: 10.13%	veto efficiency : 45.26%
L1	use percentage: 53.06%	use percentage: 66.47%
LSC-PRC_CTRL	veto efficiency: 13.71%	veto efficiency: 46.77%


G040380-00-Z

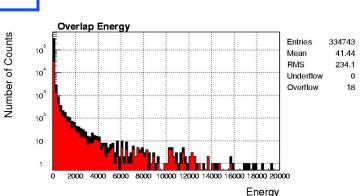
Energy

H2 burst/inspiral veto search: AS_I/POB_Q/MICH_CTRL/PRC_CTRL

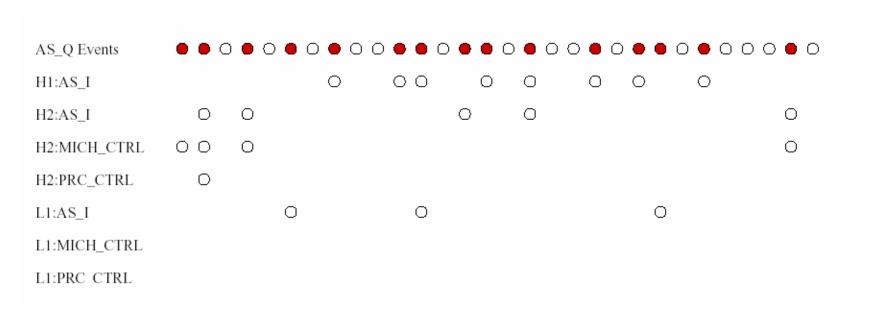


H2 burst/inspiral veto search: AS_I/POB_Q/MICH_CTRL/PRC_CTRL

				AS AC AS DC REFL DC	
Channel	BURST KW all events >4o	BURST KW outliers	Inspiral BNS	SPOB_MON for some loud events Overlap Lifetyy	
AS_I	use: 59% eff: 71%	use: 61% eff: 79%		10 ⁴	
PRC_CTRL	use: 75% eff : 29%	use: 60% eff: 42%		10 ²	
MICH_CTRL	use: 37% eff : 24%	use: 32% — eff : 83%	looks good	0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000	
POB_Q	use: 39% eff : 7%		use: 10% eff : 30%	ate events vetoe	
POB_I	use: 94% eff : 4%			BN\$ SNR>10	
REFL_Q	use: 45% eff : 5%		use: 37% eff :31%	10 5 0 0 1 2	
deadtime %					



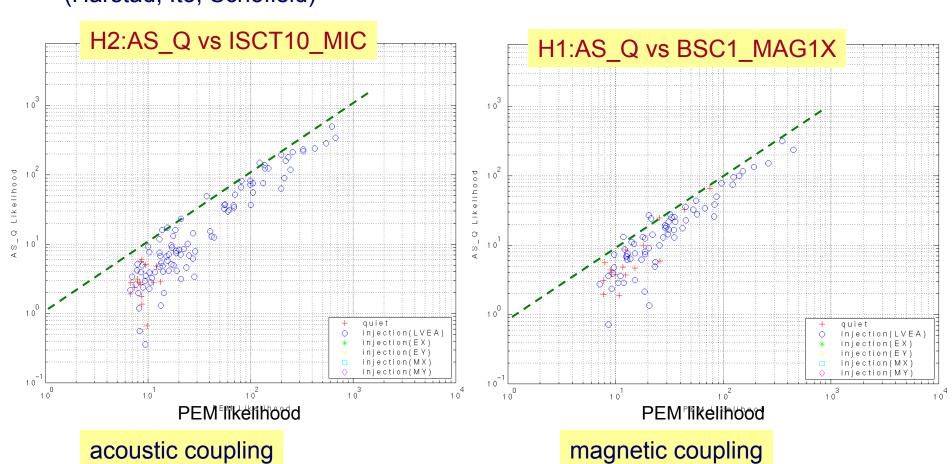
H1 burst/inspiral veto search: AS_I/POB_Q/MICH_CTRL/PRC_CTRL


AS_AC, AS_I, MICH_CTRL, POB_I, POB_Q, REFL_Q

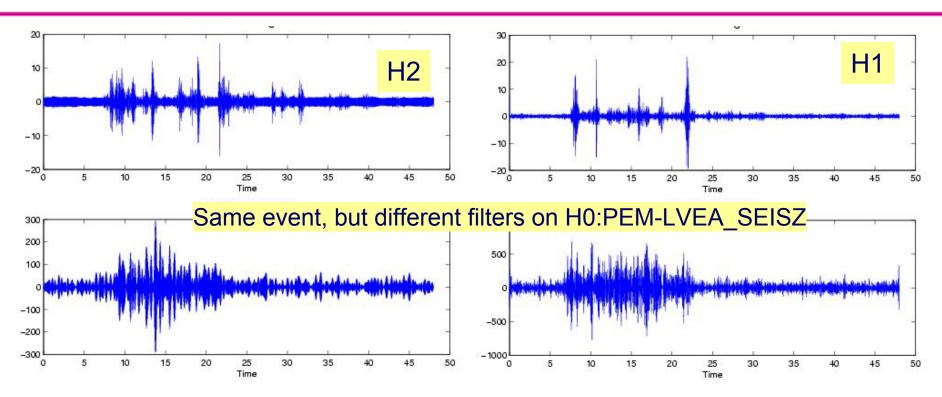
AS_AC AS_DC REFL_DC for some loud events

Are these types of veto going to be used this time?

hopefully yes



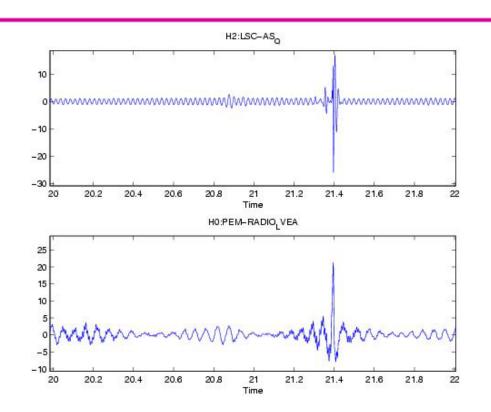
PEM vetos

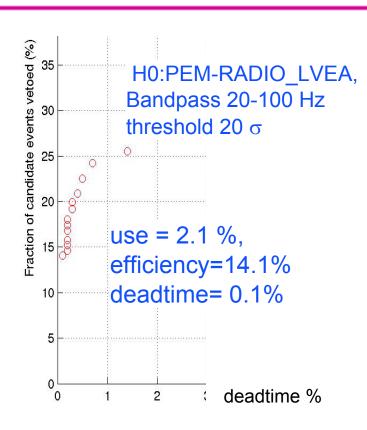

H1-H2 PEM injections

using waveMon around the time of PEM injections to establish coupling (Harstad, Ito, Schofield)

Inspiral H1 and H2 S3 Veto H0:PEM-LVEA_SEISZ

H2: Band Pass 2-20 Hz, threshold 9σ LVEA_SEISZ Events in H2 playground 37.5% use for +/- 5 s or 10 s windows 16 events; 6 of these events are at the same time as H1 and H2 inspiral triggers.


G040380-00-Z


H1: Band Pass 2-20 Hz, threshold=9σ LVEA_SEISZ Events in H1 playground 77% use for +/- 10 s windows 13 events, negligible deadtime

Bantilan, Christensen

H2 S3 BNS Veto: H0:PEM-RADIO_LVEA

For all of the hardware injections inspected no obvious simultaneous event in RADIO_LVEA

S3 Veto L0:PEM-RADIO_LVEA

Many glitches in L1:LSC-AS Q simultaneous with glitches in L0:PEM-RADIO_LVEA Power in RADIO goes in 60Hz harmonics

Potential problem seen with only one hardware injection.

AS Q and RADIO passed through a 5 Hz to 25 Hz Elliptic filter.

This injection had an effective distance of 250 kpc; there were injections up to 20 times larger.

Bantilan, Christensen

Summary

- S3 glitch investigation is active
 - » veto strategy
 - » glitch trigger archival and distribution
 - » parallel investigative efforts
- Good potential vetos
 - » interferometer channels particularly effective at detecting loudest events
 - » veto safety checked with hardware injections
- PEM playing stronger role
 - » will especially explore H1-H2 correlations
- Approaching a regime where vetos affect the astrophysical results in burst and inspiral searches