Reducing the mirrors coating noise in laser gravitational-wave antennae by means of double mirrors (gr-qc/0406071)

> F.Ya.Khalili Moscow State University

1. Introduction

2. Double mirror reflector

- 3. Equation and Estimates
- 4. On the EETM mirror design
- 5. Conclusion

1. Introduction

2. Double mirror reflector

3. Equation and Estimates

4. On the EETM mirror design

5. Conclusion

Coating thermal noise in AdvLIGO

G.M.Harry et al, www.ligo.caltech.edu/docs/P/P040023-00

TD noise, fused silica with $Ta_2O_5 + SiO_2$

V.B.Braginsky, S.P.Vyatchanin, Phys. Lett. A **312**, 169 (2003).

TD noise, sapphire with $Ta_2O_5 + SiO_2$

V.B.Braginsky, S.P.Vyatchanin, Phys. Lett. A **312**, 169 (2003).

Coatingless corner reflectors

V.B.Braginsky, S.P.Vyatchanin, Phys. Lett. A **324**, 345 (2004).

1. Introduction

2. Double mirror reflector

3. Equation and Estimates

4. On the EETM mirror design

5. Conclusion

The noise depends on coating thickness:

Most of the light is reflected from the first couple of layers;

at the same time, mechanical fluctuations of the mirror surface are created by the thickness fluctuations of all underlying layers;

The noise depends on coating thickness:

Most of the light is reflected from the first couple of layers;

at the same time, mechanical fluctuations of the mirror surface are created by the thickness fluctuations of all underlying layers; therefore, the more is the number of layers n, the larger is the surface noise spectral density S:

Brownian: $S \propto n$ Thermoelastic: $S \propto n^2$

The noise depends on coating thickness:

Most of the light is reflected from the first couple of layers;

at the same time, mechanical fluctuations of the mirror surface are created by the thickness fluctuations of all underlying layers; therefore, the more is the number of layers n, the larger is the surface noise spectral density S:

Brownian: $S \propto n$ Thermoelastic: $S \propto n^2$

The surface fluctuations are relatively small for the input mirrors (ITM) and is considerably larger for the end mirrors (ETM).

The idea of double mirror reflector:

mechanically isolate most of the layers from the mirror surface by replacing one of the layers by an air gap:

The idea of double mirror reflector:

mechanically isolate most of the layers from the mirror surface by replacing one of the layers by an air gap:

The idea of double mirror reflector:

mechanically isolate most of the layers from the mirror surface by replacing one of the layers by an air gap:

$$L = \frac{N_1 \lambda}{2} \approx 4 \,\mathrm{Km}\,,$$
$$l = \left(\frac{N}{2} + \frac{1}{4}\right) \lambda \lesssim 10 \,\mathrm{m}\,.$$

ITM, IETM are similar thin-coating mirrors; EETM is a thick-coating one.

1. Introduction

2. Double mirror reflector

- 3. Equation and Estimates
- 4. On the EETM mirror design
- 5. Conclusion

Combined reflection

$$1 - \mathcal{R}_1 \approx 5 \times 10^{-2}$$
, $1 - \mathcal{R}_2 \lesssim 10^{-5}$, $\mathcal{A} \lesssim 10^{-5}$.

$$1 - \mathcal{R} \approx \frac{1 - \mathcal{R}_1}{4} (1 - \mathcal{R}_2 + 2\mathcal{A})$$

Combined reflection

$$1 - \mathcal{R}_1 \approx 5 \times 10^{-2}$$
, $1 - \mathcal{R}_2 \lesssim 10^{-5}$, $\mathcal{A} \lesssim 10^{-5}$.

$$1 - \mathcal{R} \approx \frac{1 - \mathcal{R}_1}{4} \left(1 - \mathcal{R}_2 + 2\mathcal{A} \right) \lesssim 10^{-6}$$

Combined reflection

$$1 - \mathcal{R}_1 \approx 5 \times 10^{-2}$$
, $1 - \mathcal{R}_2 \lesssim 10^{-5}$, $\mathcal{A} \lesssim 10^{-5}$.

$$1 - \mathcal{R} \approx \frac{1 - \mathcal{R}_1}{4} (1 - \mathcal{R}_2 + 2\mathcal{A}) \lesssim 10^{-6}$$
Note this factor

The reflected light beam phase shift

$$1 - \mathcal{R}_1 \approx 5 \times 10^{-2}$$
, $1 - \mathcal{R}_2 \lesssim 10^{-5}$, $\mathcal{A} \lesssim 10^{-5}$.

$$\phi \approx \frac{1 - \mathcal{R}_1}{4} \frac{4\pi}{\lambda} \, \delta l$$

The reflected light beam phase shift

$$1 - \mathcal{R}_1 \approx 5 \times 10^{-2}$$
, $1 - \mathcal{R}_2 \lesssim 10^{-5}$, $\mathcal{A} \lesssim 10^{-5}$.

$$\phi \approx \frac{1 - \mathcal{R}_1}{4} \frac{4\pi}{\lambda} \, \delta l \approx 10^{-2} \, \frac{4\pi}{\lambda} \, \delta l$$

Circulating optical power

$$1 - \mathcal{R}_1 \approx 5 \times 10^{-2}$$
, $1 - \mathcal{R}_2 \lesssim 10^{-5}$, $\mathcal{A} \lesssim 10^{-5}$.

$$w \approx \frac{1 - \mathcal{R}_1}{4} W$$

Circulating optical power

$$1 - \mathcal{R}_1 \approx 5 \times 10^{-2}$$
, $1 - \mathcal{R}_2 \lesssim 10^{-5}$, $\mathcal{A} \lesssim 10^{-5}$.

$$w \approx \frac{1 - \mathcal{R}_1}{4} W \approx 10^{-2} W \approx 10 \,\mathrm{KW}$$

- 1. Introduction
- 2. Double mirror reflector

- 3. Equation and Estimates
- 4. On the EETM mirror design
- 5. Conclusion

On the **EETM** mirror design

Influences of not only coating noise of the EETM mirror but of all possible kinds of its surface fluctuations are suppressed by the same factor $(1 - \mathcal{R}_1)/4 \approx 10^{-2}$.

On the **EETM** mirror design

Influences of not only coating noise of the EETM mirror but of all possible kinds of its surface fluctuations are suppressed by the same factor $(1 - \mathcal{R}_1)/4 \approx 10^{-2}$.

This includes:

brownian fluctuation in the suspension and seismic noise ⇒ simplified suspension system can be used for EETM mirror;

On the **EETM** mirror design

Influences of not only coating noise of the EETM mirror but of all possible kinds of its surface fluctuations are suppressed by the same factor $(1 - \mathcal{R}_1)/4 \approx 10^{-2}$.

This includes:

brownian fluctuation in the suspension and seismic noise \Rightarrow simplified suspension system can be used for EETM mirror;

the mirror quantum fluctuations \Rightarrow its mass can be as small as

$$m \gtrsim \left(\frac{1-\mathcal{R}_1}{4}\right)^2 M \sim 5 \,\mathrm{gr}$$

1. Introduction

- 2. Double mirror reflector
- 3. Equation and Estimates
- 4. On the EETM mirror design
- 5. Conclusion

Conclusion

1. Proposed method allows to reduce the coating Brownian noise spectral density by factor

$$\frac{n_{\rm ETM}}{n_{\rm ITM}} \sim 10 \, .$$

Conclusion

1. Proposed method allows to reduce the coating Brownian noise spectral density by factor

$$\frac{n_{\rm ETM}}{n_{\rm ITM}} \sim 10$$
 .

2. It allows to reduce the coating thermoelastic noise spectral density by factor

$$\left(\frac{n_{\rm ETM}}{n_{\rm ITM}}\right)^2 \sim 10^2 \,.$$

Conclusion

1. Proposed method allows to reduce the coating Brownian noise spectral density by factor

$$\frac{n_{\rm ETM}}{n_{\rm ITM}} \sim 10$$
 .

2. It allows to reduce the coating thermoelastic noise spectral density by factor

$$\left(\frac{n_{\rm ETM}}{n_{\rm ITM}}\right)^2 \sim 10^2 \,.$$

3. Its implementation does not looks as a very difficult one because small EETM mirror with simplified suspension system can be used.

Acknowledgments

I am grateful to V.B.Braginsky, S.L.Danilishin, G.Harry, D.Ottaway and S.P.Vyatchanin who have helped me in this new for me area of non-quantum noises.