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Introduction

• Coincidence experiments with three (or more!) 
wide-band detectors of gravitational waves (GW) 
are going to be performed soon.

• They will enhance the likelihood of detection
– For a given false-alarm probability, the detection 

threshold can be lowered => more volume of space 
can be searched for => more sources can potentially 
been seen!

• They will provide a self-consistency check for a 
positive observation => they will allow us to 

Make Astronomical Observations!



Statement of the Problem

• Making astronomical observations by using the 
detectors data means:
– being able to estimate the direction to the source (θ, 

φ), and
– reconstruct the wave’s two independent amplitudes 

(h+ (t), hx (t)).
• The determination of these four unknowns 

provides the solution of the so called Inverse 
Problem in Gravitational Wave Astronomy.

• In what follows we will investigate the Inverse 
Problem for GW Bursts, i.e. signals that last only 
for a few milliseconds and do not have “a well 
defined” waveform.



Detector Response

Note: Ψ‘ can be taken to be equal to zero!

S.V. Dhurandhar & M. Tinto, MNRAS, 234, 663 (1988)



Network Coordinates
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ρ

• A network of 3 wide-
band detectors gives 3 
functions of time Rk(t) 
(k=1, 2, 3), and two 
independent time 
delays.

• They provide enough 
information for uniquely 
identify the source 
location.
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Time-Delays and Antenna Patterns
1. How do we compute the time delays?
2. How can we take advantage of the asymmetry 

of the detectors’ antenna patterns w.r.t. the 
symmetry plane in order to uniquely identify the 
location of the source in the sky?

One could compute the cross-correlations between 
pairs of detectors:
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However: Because of the Earth curvature, the
detectors will see two different linear combinations
of h+(t) & hx(t)



Three-Detector Responses
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Time-Delays and Antenna…(cont.)

Example:
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Wave travel time from detector 1 to 2 Extra delay due to Earth-curvature

• The extra-delay can be significant!
• For the detectors’ locations considered in ’89, 

the extra delay can be ~ 15% of the exact time 
delay => significant inaccuracy in source 
location.



Determination of the Time-Delays and 
Solution of the Inverse Problem

• Let us assume the clocks at each site to be 
perfectly synchronized!

• Let us also assume for the moment:
– Noiseless detectors.
– To know the location of the source in the sky.
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Determination of the…(cont.)

The following two-parameter function
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becomes identically null as (θ, φ)       (θs, φs) 

The function L(θ, φ) also becomes identically null 
as (θ, φ)       (θs, φs)!



Least-Squares Method with 
Noisy Detector Responses
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Λi (t) = Random processes representing the noise in each detector.
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Least-Squares Method with 
Noisy Detector Responses (cont.)

• If the detectors’ noises are Gaussian distributed, 
the minimization procedure can be optimized by 
normalizing the function IΛ(t, θ, φ) in the following 
way 

dt
KKK

tRKtRKtRK
tt

L

KKK
tRKtRKtRKtI

t

t
∫ ++

++++
−

=

++
++++

≡

ΛΛΛ
Λ

ΛΛΛ
Λ

1

0

2
33

22
22

22
11

2

2
1333122211

01

2/12
33

22
22

22
11

2
1333122211

),(),(),(
)](),()(),()(),([1),(

]),(),(),([
)(),()(),()(),(),,(

σφθσφθσφθ
τφθτφθφθφθ

σφθσφθσφθ
τφθτφθφθφθ



How accurate is the determination of the 
source location with this method?

• For good SNR we expect the solution found by the 
minimizer to be close to the actual source location.

• We approximate LΛ(θ, φ) with a quadratic form in a 
nhbh of the minimum:
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• Since at the source location the least-squares 
function is normalized to unity, from the equation 
above we get:
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How accurate is…(cont.)

• One can solve for (∆θ, ∆φ) by diagonalizing the 
Hessian matrix.

• By making an orthogonal transformation to 
diagonal coordinates (x1, x2) we get:
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Error box in locating the source in the sky



Accuracy of the Estimated Source Location
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Wave Amplitudes Reconstruction
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• Once the source location has been identified, one 
can reconstruct in 3 distinct ways the two wave 
amplitudes:

• There exists an Optimal Linear Combination of the 
above three expressions for the reconstructed 
wave amplitudes.

• It is optimal in the sense that it minimizes the root-
mean-squared noise in the reconstructed 
waveform. 



Wave Amplitudes Reconstruction (cont.)
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• This constraint follows from the condition
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• The root-mean-squared error in the reconstructed 
waveform is equal to
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• We minimize δh+ with respect to a+i subject to the 
constraint a+1 + a+2 + a+3 = 1.

• The solution exists and is unique!



Optimally Reconstructed Wave Amplitudes



Can the accuracy of the method be improved?

• If we could further reduce the contribution of the 
noise to the Least-Squares function, the accuracy 
in the location of the source would improve!

• Optimal Filtering could be applied if a priori
knowledge of the detector responses would be 
available (not our case!)

• There exists, however, methods that enable us to 
construct a near-optimal filter for the detector 
responses from the data themselves!

• These methods take advantage of the fact that the 
signal has a spectrum distinguishable from that of 
the noise.

• A fairly crude determination of the optimal filter can 
still perform well!!

Numerical Recipes, CUP, 1986, p.417



Can the accuracy of…(cont.)
• Note that, in order to incorporate a filtering 

procedure within the Least-Squares method, one 
can not simply apply filtering to each of the 
responses: THE TIME DELAY INFORMATION 
WOULD BE ALTERED!

• Since the source location is determined by 
minimizing the integral of I2Λ(t,θ,φ), filtering has to 
be applied to IΛ(t,θ,φ).



Near-Optimal Filter



Accuracy of the Estimated Source Location 
(with Near-Optimal Filter)



Summary of Results and Conclusions

• Numerical simulations of the method showed that:
– For broadband bursts of dominant frequency equal to ~1 

kHz, with a SNR~10, the source could be located within 
a solid angle of ~ 10-5 sr.

– For SNRs significantly lower than 10 the method could 
not distinguish between the two points in the sky.

– For SNRs equal to 1 or less the method looses its 
resolution completely.

• This method could be applied to data from triple 
coincidence experiments that are planned to take 
place in the near future.

• It can be used as “veto” to coincident events, i.e. it 
can actually be used for testing the detection 
hypothesis!



Summary of…(cont.)

• Networks with 4 detectors running in coincidence 
have also been analyzed within the “GT” method.

• Better sky coverage and angular resolution.
• Results published in a conference proceedings (1st

VIRGO Meeting, 1996).



Arbitrary Waveforms



(Fi+Fjx – FixFj+) Functions
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