

Research and Development for Advanced LIGO

Aspen winter conference

Jan. 20, 2005

O. Miyakawa, Caltech and the LSC collaboration

Initial and Advanced LIGO

- Factor 10 better amplitude sensitivity
 - $(Reach)^3 = rate$
- Factor 4 lower frequency 10⁻²²
- NS Binaries: for three interferometers,
 - » Initial LIGO: ~20 Mpc
 - » Adv LIGO: ~300 Mpc 10⁻²³
- BH Binaries:
 - » Initial LIGO: 10 M_o, 100 Mpc
 - » Adv LIGO : 50 M_{o} , z=2
- Stochastic background:
 - » Initial LIGO: ~3e-6
 - » Adv LIGO ~3e-9

Anatomy of the projected Adv LIGO detector performance

Pre-stabilized laser

- Requirements: 180 W at output of laser
- Frequency stabilization
 - » 10 Hz/Hz^{1/2} at 10 Hz required
 - 10 Hz/Hz^{1/2} at 12 Hz seen in initial LIGO
- Intensity stabilization
 - » 2x10⁻⁹ ΔP/P at 10 Hz required
 - » 2003: 1x10⁻⁸ at 10 Hz demonstrated
- 2004: Full injection locked master-slave system running, 200 W, linear polarization, single frequency, many hours of continuous operation (LZH, AEI)

Input Optics

- Provides phase modulation for length, angle control
- Stabilizes beam position, frequency with suspended mode-cleaner cavity
- Matches into main optics (6 cm beam) with suspended telescope
- Design similar to initial LIGO but 20x higher power
- Challenges:
 - » Modulators
 - » Faraday Isolators
- 2004: Prototype RTP modulator UF/New Focus
 - » 4 mm clear aperture
 - » 90W, 700 micron beam
 - » RFAM < 10-5
 - » Some anticipated lensing, but no evident damage

- Faraday Isolator
 - » 10 mm FI being tested at LZH ok at 120 W!

Core optics / Sapphire

- Low mechanical loss, high Young's modulus, high density, high thermal conductivity
 - Highest Q measured at >250 million
- Higher thermoelastic noise, inhomogeneous absorption
 - Average level ~60 ppm, 40 ppm desired
 - Variations large, relatively abrupt, 10-130 ppm
- Thermoelastic noise
 - Significant in Sapphire, negligible in **Fused Silica**
- Elegant direct measurements at Caltech confirm model; follow up by Japanese group also agrees

TNI Noise Curve - Sapphire Mirrors

Core optics / Fused Silica

- Fused Silica is the 'traditional' material
- Production of 40 kg pieces with absorption, homogeneity
- Familiar; fabrication, polishing, coating processes well refined
- Development program to reduce mechanical losses, understand frequency dependence
 - » Annealing proven on small samples, needs larger sample tests
- Assembly of available data of Q vs. Freq, volume/surface
 - » Consistent with theory for relaxation process in silica

Test mass coatings: Thermal noise

30 λ/8 tantala 3λ/8 silica

- Evidence of frequency dependence of coating mechanical loss
- Increasing Titania dopant reduces mechanical loss (LMA)
 - » So far, loss 2.7 $10^{-4} \rightarrow 1.6 \ 10^{-4}$;

- Secondary ion-beam bombardment reduces loss (CSIRO)
 - » So far, loss 4.4 $10^{-4} \rightarrow 3.2 \ 10^{-4}$
- Both approaches still require tests for optical properties, optimization, checks if compatible and if both work at lower losses
- Seems likely that we can approach goal of 5 10⁻⁵ with such incremental improvements

Active Thermal Compensation

- Removes excess 'focus' due to absorption in coating, substrate
- Allows optics to be used at all input powers
- 2004: Successful application to initial LIGO using new 'staring' approach
- ZnSe Viewport Over-heat pattern Inner radius = 4cm Outer radius =11cm

- Modeling, investigating effect on sidebands and point absorbers
 - » Silica and Sapphire behave differently due to thermal expansion, thermal conductivity differences;
 - » Some (dis)advantages for each, with Silica better on balance for 'clean' coatings

10

Test Mass downselect

- Astrophysics advantages for both substrates
- Risks in production greater for sapphire
- Recent new ingredient: thermal compensation
- Basic suspension design could accommodate either substrate
- Recommendation this month

LIGO

Isolation: HEPI

 2004: External pre-isolator installed, in commissioning at Livingston

» System performance meets initial needs

» Exceeds Advanced LIGO requirements

 Livingston interferometer locks during day and through train transits

Suspensions

- Quadruple pendulum design chosen
 - » Fused silica fibers, bonded to test mass
 - » Leaf springs (VIRGO origin) for vertical compliance
 - » Quad lead in UK; U Glasgow, Birmingham, Rutherford
- Detailed design underway
 - » 'Mass catcher' frame
 - » Interface with Seismic Isolation
 - » Finite element modeling
- Triple suspensions for auxiliary optics
 - » Relaxed performance requirements
- 2004: Mode Cleaner suspension installed in LASTI full-scale testbed
- Uses HEPI as 'shake table' for excitation
- Characterization of modes, isolation match model nicely

GW readout, Systems

- 2004: Caltech 40m prototype giving guidance to design
 - » Exploring modulation techniques; adoption of Mach-Zehnder design to avoid 'sidebands on sidebands'
 - » Off-resonant arm lock with Dualrecycled Michelson

GW readout, Systems

- DC rather than RF for GW sensing
 - » Requires Output Mode-Cleaner to reject RF
 - » Offset ~ 1 picometer from dark fringe can tune from 0 to 80 deg with 0-100 mW of fringe offset power

Noise Source	RF readout	DC readout
Laser frequency noise	~10x more sensitive	Less sensitive since carrier is filtered
Laser amplitude noise	Sensitivity identical for frequencies below ~100 Hz; both driven by technical radiation pressure	
	10-100x more sensitive above 100Hz	Carrier is filtered
Laser pointing noise	Sensitivity essentially the same	
Oscillator phase noise	-140 dBc/rtHz at 100 Hz	NA

LIGO

Baseline plan

- Initial LIGO Observation at design sensitivity 2005 2010
 - » Significant observation within LIGO Observatory
 - » Significant networked observation with GEO, VIRGO, TAMA
- Structured R&D program to develop technologies
 - » Conceptual design developed by LSC in 1998
 - » R&D progressing toward Final Design phase
- 2004: NSB recommends Advanced LIGO for funding consideration
- 2007: First (possible) funds arrive
 - » Test Mass material, seismic isolation fabrication long leads
 - » Prepare a 'stock' of equipment for minimum downtime, rapid installation
- 2010: Start initial decommissioning/installation
 - » Baseline is a staggered installation, Livingston and then Hanford
- 2013: Coincident observations
 - » At an advanced level of commissioning