The Gran Sasso Underground Laboratory

Eugenio Coccia INFN Gran Sasso and University of Rome "Tor Vergata". <u>coccia@lngs.infn.it</u> LIGO-G050033-00-Z

Laboratori Nazionali del Gran Sasso

Aspen - GWADW January 17, 2005

INFN Gran Sasso National Laboratory

QuickTime™ and a Photo - JPEG decompressor are needed to see this picture.

L'AQUILA

Tunnel of 10.4 km

In 1979 A. Zichichi proposed to the Parliament the project of a large underground laboratory close to the Gran Sasso highway tunnel, then under construction

In 1982 the Parliament approved the construction, finished in 1987

In 1989 the first experiment, MACRO, started taking data

LABORATORI NAZIONALI DEL GRAN SASSO - INFN

Largest underground laboratory for astroparticle physics

L'AQUILA

1400 m rock coverage cosmic μ reduction= 10⁻⁶ (1 /m² h) underground area: 18 000 m² external facilities easy access 756 scientists from 25 countries Permanent staff = 66 positions

Research lines

TERAMO

Neutrino physics

(mass, oscillations, stellar physics)

CERN

- Dark matter
- Nuclear reactions of astrophysics interest
- Gravitational waves
- Geophysics
- Biology

LNGS Users

Foreigners: 356 from 24 countries

Italians: 364

Permanent Staff: 64 people

External facilities

Administration **Public relationships support** Secretariats (visa, work permissions) Outreach **Environmental issues** Prevention, safety, security General, safety, electrical plants **Civil works** Chemistry Cryogenics **Mechanical shop** Electronics Computing and networks Offices Assembly halls Lab & storage spaces Library **Conference rooms** Canteen

Officina Meccanica Sig. A. Tataianni

Underground Laboratories

V beam from CERN: **ICARUS OPERA**

ββ decay and rare eventse article phy Cuoricino; HDMS; Gin operation, 3 in **CUORE; GERDA** 4 exp. geophysics

Dark Matter DAMA/LIBRA; CRESST WARP; XENON

SN 1998bu

1 exp. biology

Stokan experiments approved in 2004 Supernovae **GNO** VD Luna **Borexino Borexino ICARUS ICARUS**

CNGS CERN to Gran Sasso Neutrino Project

NFI

 ν_{μ} beam produced at CERN and detected at LNGS after a travel of 730 km

Approved by CERN and INFN in 1999, ready in 2006

OPERA

Collab.: Italy, France, China, Germany, Belgium, Turkey, Switzerland, Russia, Japan, Israel, Croatia

2 super-modules 1800 t sensitive mass

To detect τ is necessary a μ m resolution because the τ decays in a really short time

Layers of emulsions and Lead

เทรท่

QuickTime™ e un decompressore TIFF (Non compresso) sono necessari per visualizzare quest'immagine.

ICARUS Imaging Cosmic and Rare Underground Signals

Liquid Argon (-176 °C)

First half of T600 module successfully operated in Pavia Expect to install T600 in 2004 T3000 detector proposed as a series of five T600 modules

•Wide physics program

- .• ν_{τ} and ν_{e} appearance on CNGS
- atmospheric neutrinos
- supernova neutrinos
- solar neutrinos
- proton decay

Collaboration: Italy, Poland, China Spain, Switzerland, USA

ICARUS T600 Dicember 3, 2004

Collab.: Italy, France, Germany

Goals: measurement of the interaction rate with an accuracy of 4-5% and monitoring the neutrino flux over a complete solar cycle.

101 tons Gallium Cloride solution ⁷¹Ge(v_e,e)⁷¹Ge Energy threshold > 233 keV Sensitive mainly to pp -neutrinos

SSM - 115 - 135 SNU

BOREXINO

300 tons liquid scintillator in a nylon bag 2200 photomultipliers 2500 tons ultrapure water Energy threshold 0.25 MeV Real time neutrino (all flavours) detector Measure mono-energetic (0.86 MeV) ⁷Be neutrino flux through the detection of v-e.

40 ev/d if SSM

Sphere 13.7 m diam. Supports the P Ms & optical concentrators Space inside the sphere contains purified PC Purified water outside the sphere

running in 2005

Collab.: Italy, France, USA, Germany, Hungary, Russia, Belgium Poland, Canada

LUNA Laboratory for Underground Nuclear Astrophysics

Istituto Nazionale di Fisica Nucleare

Istituto Nazionale di Fisica Nucleare

2004 May 13

The Universe, seen under the Gran Sasso mountain, seems to be older than expected

Some nuclear fusion reactions inside stars occur more slowly than we thought and, as a consequence, stars themselves, as well as galaxies and the entire universe are a bit older than expected. This is what comes out from the last results of Luna experiment (Laboratory for Underground Nuclear astrophysics), settled by National Laboratories of Gran Sasso and realized in cooperation by Infn and Ruhr University in Bochum (Germany). The study, that will be published on the review Physics Letters B next June 17, has been published today on the website of the review. A second article has been accepted by the review Astronomy and Astrophysics.

© Copyright Matthias Junker LNG8-INFN The use of photos is free of charge. Please request authorisation from the INFN Communication Office <u>Request authorisation</u>

LVD Large Volume Detector

Running since 1992

1000 billions v in 20s from the SN core Measurement of neutrinos spectra and time evolution provides important information on v physics and on SN evolution. Neutrino signal detectable from SN in our Galaxy or Magellanic Clouds

- 2 4 SN/century expected in our Galaxy. Plan for multidecennial observations
- 1000 tons liquid scintillator + layers of streamer tubes
- 300 ν from a SN in the center of Galaxy (8.5 kpc)

SN1987A

Early warning of neutrino burst important for astronomical observations with different messengers (Gravitational Waves) SNEWS = Supernova Early Warning System LVD, SNO, SuperK in future: Kamland, BOREXINO

Direct Detection Methods

Dark Matter Search

Detection of WIMPs (Weakly Interacting Massive Particle) through the flash of light produced by a lodine nucleus recoiling after having been hit by the WIMP.

DAMA/NaI-1 to -7

The data favor the presence of a modulated behavior with proper features at 6.3σ C.L.

Present:

Neutrino masses and $0\nu 2\beta$ decay Heidelberg Moscow experiment

HV Klapdor et al, NIMA: Data Acquisition and Analysis of the 76-Ge Double Beta experiment in Gran Sasso 1990-2003

New proposals

LISA Cuore Warp Xenon Gerda

Class. Quantum Grav. 20 (2003) 317-329

PII: S0264-9381(03)56410-3

Atmospheric gravity perturbations measured by a ground-based interferometer with suspended mirrors

V N Rudenko¹, A V Serdobolski¹ and K Tsubono²

Figure 3. The pressure spectrum on the Earth's surface. Calculated curve with h = 18 km, $V = 3 \text{ m s}^{-1}$ and $\rho = 0.55$ kg m⁻³ (a) and experimental data (b).

Cella et al.

Going underground has more advantages:

- Atmospheric NN reduction
- Collective atmospheric effects damped
- Higher temperature stability

Two-degrees of freedom roto-translational pendulum

Cosmic ray interaction in the bar

Thermo-Acoustic Model:

the *energy deposited* by the particle is converted in a *local heating* of the medium:

$$\delta T = \frac{\delta E}{\rho C V_0}$$

$$\delta p = \gamma \frac{\delta E}{V_0} \qquad \gamma = \frac{\alpha Y}{\rho C}$$

Excitation of the longitudinal modes of a cylindrical bar

$$E_n = \frac{1}{2} \frac{l^2}{V} \frac{G_n^2}{\rho v^2} \gamma^2 \left(\frac{dE}{dX}\right)^2$$

Allega A.M. & Cabibbo N. Lett Nuovo Cim 38 (1983) 263-A. De Rujula & B. Lautrup, Nucl Phys. B242 (1984) 93-144 G_n form factor

A resonant gw detector used as a particle detector is different from any other particle detector

Burst event for a present bar: a millisecond pulse, a signal made by a few millisecond cycles, or a signal sweeping in frequency through the detector resonances. The burst search with bars is therefore sensitive to different kinds of gw sources such as a stellar gravitational collapse, the last stable orbits of an inspiraling NS or BH binary, its merging, and its final ringdown.

Real data: the arrival of a cosmic ray shower on NAUTILUS

Cosmic ray: rates in the bar (events/day)

E (K)	Muon	EAS	Hadro.	Total
10 ⁻⁷	1540	1890	-	8630
10 ⁻⁶	155	323	-	941
10 ⁻⁵	12.7	50	24.2	87
10 ⁻⁴	1.2	7	3.0	11.2
10 ⁻³	0.18	0.8	0.33	1.3
10 ⁻²	0.002	0.1	0.05	0.15

Dark Energy 73% (Cosmological Constant)

Ordinary Matter 4% (of this only about 10% luminous)

Dark Matter 23%

Neutrinos 0.1–2%

The Standard Model of Elementary Particles

Dark Energy 73% (Cosmological Constant)

Ordinary Matter 4% (of this only about 10% luminous)

Dark Matter 23%

Neutrinos 0.1–2%

