

GW Interferometry at Goddard Space Flight Center

Jordan Camp NASA / Goddard Space Flight Center Jan. 20, 2005

LIGO-G050038-00-Z

NASA GODDARD SPACE FLIGHT CENTER

- Frequency stabilization of lasers
 - Optical cavity
 - Molecular iodine
- Suspension point interferometer (SPI) for testing of low-frequency interferometry
- A few "politically correct" slides
 - New science direction for NASA

Interferometry in Space

- Space interferometry a <u>strategic direction</u> in astronomy
- NASA and ESA are planning a significant number of space interferometry missions

- SIM	2010
– LISA	2014
– TPF-C	2015
TPF	2020
Darwin	2020
- MAXIM	2025

– Etc...

- **Stellar interferometry Gravitational Waves**
- **Extra-solar terrestrial planets**

Black Hole imager (x-rays)

• Need frequency stabilized lasers for all of these...

LISA – Search for Gravitational Waves

- A variety of astrophysical phenomena produce lowfrequency gravitational waves
 - Massive BH binary coalescence
 - Massive BH capture of stellar mass BH
 - Galactic compact binaries

- •LISA will measure strain from GW's of 10⁻²¹
 - Measure position to 10⁻¹² m, spacecraft separation of 5 x 10⁹ m
 - $\Delta v / v \sim 10^{-21}$ for stabilized laser

Methods of Laser Stabilization

- Frequency stabilization is only as good as the stability of the reference
- Optical resonator
 - Low-loss mirrors held fixed by ULE cavity
 - Length of cavity determines resonant frequency
 - Variable DC frequency, temperature sensitive
- Atomic or molecular gas transition
 - Gas held in transparent cell
 - Transition provides absolute frequency reference
 - Better at low frequencies, worse at high (~ 1 mHz crossover)

Optical Cavities: experimental set-up

Cavities in 5 layers of gold coated stainless steel in vacuum chamber Cavities manufactured from ULE cylinders with fused silica mirrors optically contacted to end faces

Thermal noise limit to cavity frequency stabilization (K. Numata)

- •Thermal noise is fundamental limit to cavity stability
- Mechanical loss of spacer, mirror, coatings causes thermal noise
 - Limit ~ $3 \text{ Hz} / \text{Hz}^{1/2}$ 1 mHz 10⁻² Hz/Hz^{1/2} 100 Hz

NIST and VIRGO data both limited by ULE mirror substrates (Q $\sim 6 \times 10^4$)

PRL 93, 250602 (2004)

PHYSICAL REVIEW LETTERS

week ending 17 DECEMBER 2004

Thermal-Noise Limit in the Frequency Stabilization of Lasers with Rigid Cavities

Kenji Numata,* Amy Kemery, and Jordan Camp

Laboratory for High Energy Astrophysics, Code 663, NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771, USA (Received 24 July 2004; published 17 December 2004)

GODDARD SPACE FLIGHT CENTER

NASA GODDARD SPACE FLIGHT CENTER

Iodine noise performance (20 cm length cell) V. Leonhardt

Low-Frequency Interferometry Testbed

Suspension Point Interferometer testing platform

- goal: lock platforms at picometer, nanoradian level
- stable platforms will allow study of interferometry, noise

Hexapod: 6 PZT's for 6 DOF control $v_{res} \sim 230$ Hz, Q ~ 6

2 iodine stabilized lasers: sense/control hexapod, and measure residual noise

ASA GODDARD SPACE FLIGHT CENTER

SPI Performance so far

GODDARD SPACE FLIGHT CENTER

New direction for NASA science

- "We support NASA's <u>Vision for Space Exploration</u>...."
 - Moon, mars, infinity and beyond....
- Science activities shifting in this direction
 - Earth science measurements to support planetary science of Mars, Saturn, etc.
 - Astrophysics must also show relevance to this (not easy...)
- Terrestrial planet finding now a hot subject

TPF – C : Search for Terrestrial Planets

•Coronagraph will look for reflected light from planet by blocking direct star light from nearby stars (< 15 pc)

• Spectroscopy of signal will give information on composition of planetary atmosphere

•Water, CO₂, methane

Contrast ratio of 1 : 10⁹
Telescope stability is very important

Interferometry in TPF-C

Stabilized laser and hexapod will control secondary mirror to 10⁻⁹ m, 10⁻⁹ radian over hour timescale

Metrology and control scheme will be developed on SPI

- Stabilized lasers will fly!
 - LISA 2013
 - TPF-C 2014
- Optical resonator and molecular transition under study
 - Noise requirements
 - Space qualification
- SPI testbed for low-frequency space interferometry
 - Iodine stabilization most useful