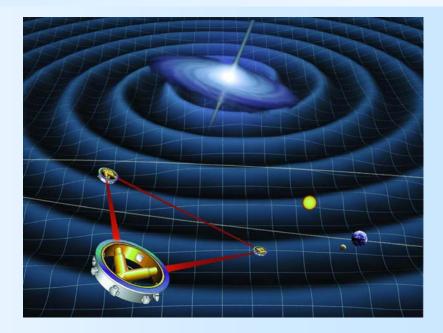


Status of LISA

Jordan Camp LISA Deputy Project Scientist NASA / Goddard Space Flight Center Jan. 19, 2005

LIGO-G050039-00-Z

VASA GODDARD SPACE FLIGHT CENTER


• LISA

- Budget and schedule
- Technology
- LISA Pathfinder
 - Technology demonstration mission

LISA – Search for Gravitational Waves

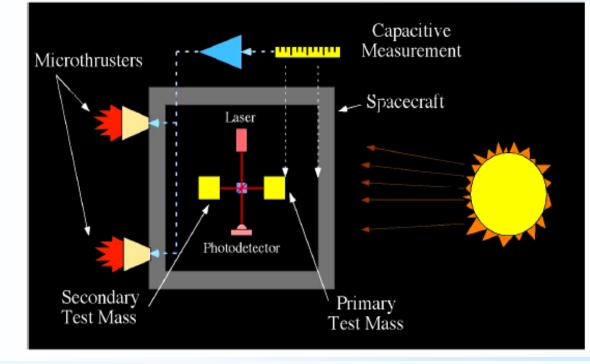
- A variety of astrophysical phenomena produce lowfrequency gravitational waves
 - Massive BH binary coalescence
 - Massive BH capture of stellar mass BH
 - Galactic compact binaries

- •LISA will measure strain from GW's of 10⁻²¹
 - Measure position to 10⁻¹² m, spacecraft separation of 5 x 10⁹ m
 - Need to isolate test masses from 10⁻¹⁶ N external forces

- LISA is a partnership between NASA and ESA
 - Joint management agreement signed 8/04
 - ESA to provide optical bench, optics, other hardware
 - Provides launch vehicle for technology demonstrator
- Goddard and JPL participation within NASA
 - Goddard responsible for project management, provides spacecraft, final integration and test
 - JPL leads US science team, provides phase meter, other hardware
- *Lots* of politics for \$2B!

- LISA funding and schedule has been impacted by the transformation of NASA
 - Implementation of exploration vision has made science funding uncertain
 - LISA budget for 2005 is \$13M, half of expected
- LISA formulation has begun
 - Products: project plan, staffing, WBS, etc....
- Launch date now 2013
 - Technology development 2005-2008
 - Little money for this so far
 - Phase C/D (implementation) 2009-2012

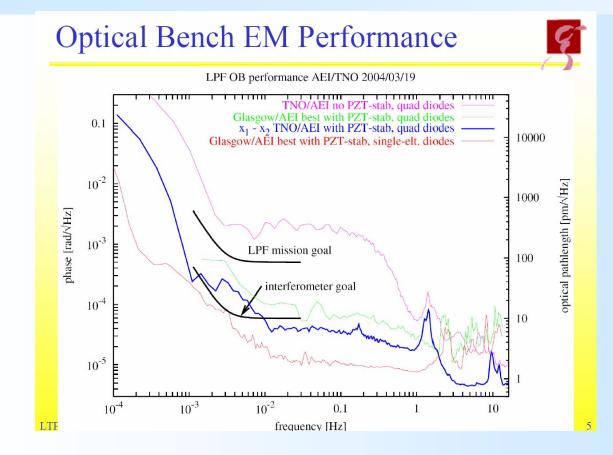
LISA Technology Drivers

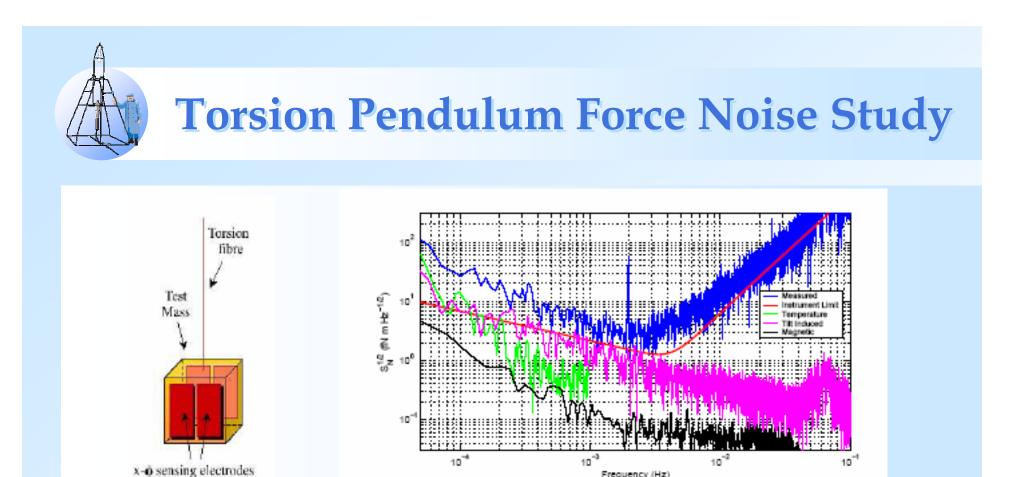

- Picometer interferometry
 - 1 W laser (space qualified, 5 year lifetime)
 - Phase meter (10⁻⁶ radian over 1000 sec at 20 MHz)
 - Frequency stabilization of laser (10⁻¹⁴ over 1000 sec)
 - Time Delay Interferometry (10⁸ attenuation of f-noise)
 - Arm cavity locking (30 sec time delay)
- Drag-free spacecraft control
 - □ µ-Newton thrusters (5 year lifetime)
 - Torsion pendulum force studies (10⁻¹⁶ N over 1000 sec)
 - Test mass caging mechanism
- \$60 M, 4 year program
 - Not yet underway

Technology Development Providers

Product	NASA R&D	Industry	Test Flight
Laser Interferometer TDI	X X	X	X
Microthrusters Low force noise Caging	X X X	X	X X X

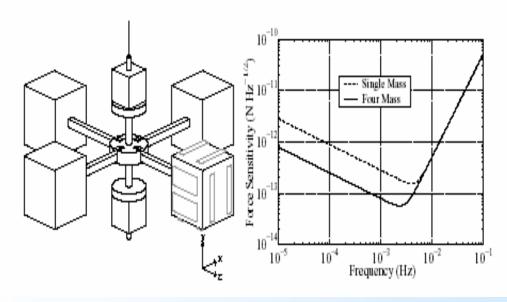
LISA Pathfinder (Technology Demo)


- Test of drag-free control system and precision interferometry
- Interferometer reads out residual noise on out-of-loop mass
 - •10 pm, 3 x 10⁻¹⁵ N over 300 sec



- Experiments flown by both NASA and ESA on the same (ESA) spacecraft
 - \$300 M (technology development) mission
- Goals
 - Measurement of acceleration noise
 - Understand components of noise: magnetic, thermal, charging, patch effect, etc.
 - Measure coupling of test mass to spacecraft
 - Precision interferometry on free-falling masses
 - Flight test of caging mechanism
 - Thruster performance
- Schedule
 - Delivery of both instruments to ESA by 6/06
 - Launch 6/08

Investigation of many LISA interferometry issues
Stability, alignment-length coupling, etc.
GODDARD SPACE FLIGHT CENTER



• Thermal noise limit of pendulum within 1/10 of test flight goal

Frequency (Hz)

- Fluctuating surface potentials (1 mV at 10⁻⁴ Hz) presents noise
 - Independently measured with Kelvin probe

•4 mass design directly sensitive to force

• 10 cm arms increase force sensitivity

Two experiments on Pathfinder

- NASA and ESA will fly separate experiments
 - Use of different technologies
 - Higher probability of success

Technology	NASA	ESA
Interferometer	homodyne	heterodyne
Thruster	ion	colloidal
System Engineering	in-house	industry

- LISA has suffered some "slings and arrows" of the new NASA exploration vision
 - 2 year delay in full mission ramp-up
 - Ground-based technology development also delayed
- LISA Technology Demonstration Mission is fully funded
 - Interferometry, drag-free control meeting goals
 - ~1/10 LISA requirements
 - Launch date of 6/08