Underground Interferometers in Japan

SATO, Nobuaki

Inter-University Corporation, Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK)

LISM, CLIO, LCGT, (TAMA300) Collaboration LIGO-G050046-00-Z

Aspen Winter Conference GWADW Jan.20, 2005

Toward Underground Large-scale Cryogenic Interferometers at KAMIOKA

1st Generation: LISM (finished)

2nd Generation: CLIO (under construction)

3rd Generation: LCGT (a future project)

Introduction of KANIOAKA

Location and Geology of Kamioka and Tokyo Juras

Kamioka Rock: Hida Gneiss (Precamblian?) Primary wave velocity : 5.5km/s

Jurassic and Pre-Jurassic Rocks

Early Pleistocene to Holocene Rocks

Kamioka Mine Site

This map is a part of Kamioka mine area.

Mining Started : 720 A.D.? Stopped: 2001

Map from kashmir3d

Tunnels and Detectors

Seismic Vibration at Kamioka, Tokyo, and TAMA Site

GWADW 02/02/2003 Aspen

1st Generation:

LISM

Laser Interferometer gravitationalwave Small observatory in a Mine

Outline of LISM

- 20m Arm Length
- 1999~2003 (finished and dismantled)
- Confirm underground advantage
- Not Cryogenic

Shuichi Sato et al. Phys.Rev.D69 (2004) 102005 GWADW 2003 (Aspen) GWADW 2002 (Elba)

GWADW (Aspen) Jan. 20, 2005 "Underground interferometers in Japan"

10

LISM Summary

• Duty Cycle: 99.8%

(with more severe condition to lock than TAMA)

Continuous Operation Record: 270h

(When no blast in the mine.)

- Temperature variation: 0.01°C/day (No temperature control system)
- Humidity variation: 0.08%/day

2nd Generation: CLIO

Cryogenic Laser Interferometer Observatory

Practical Cryogenic Interferometer (CLIO project, 2002–2005)

- 2002 \sim (under construction)
- To Confirm Cryogenic Operation of 100m Underground
 Interferometer
- Reduce Thermal Noise with 20K Sapphire Mirrors Suspended by
 Sapphire Fibers
 Cryogenic Laser Interferometer Observatory (CLIO-100)
- Locked Fabry-Perot

http://www.icrr.u-tokyo.ac.jp/gr/gr.html GWADW 2004 Kazuaki Kuroda JGRG14 2004 Nov. (Kyoto) Masaki Ando

Present Status of CLIO

- Mode Cleaner (Installed)
- One Set of Cryostat with 4K and 80K Low Vibration Pulse-Tube Cryocoolers (Confirmed Cooling Specifications at the site)

Parts Carried in the Site in 2004

- Vacuum Chambers of Center Room
- Perpendicular Arm Vacuum Duct

Low Vibration Pulse-Tube Cryocooler for Underground Site

Cryogenic Facilities at Underground Site

	Liquid Nitrogen Liquid Helium	Pulse-Tube Cryocooler
At Closed Area	×	
Continuous Operation	×	
Vibration		

(1) We chose pulse-tube cryocoolers.

(2) We developed a low vibration pulse-tube cryo-cooler with a vibration of less than 50nm.

Nano-Level Vibration Pulse-Tube Cryocooler

Vibration Measurement at Kamioka

Geophysical Observations at Kamioka

100m Laser Strainmeter for Geophysical Observations

• Parallel observation with CLIO detector in the same tunnel.

Photo Before CLIO installing

A.Araya (Earthquake Research Institute, Univ. of Tokyo) *GWADW (Aspen) Jan. 20, 2005 "Underground interferometers in Japan"*

Targets of 100m Laser Strainmeter

- Earth's Free Oscillations (Core Modes etc.)
- Earth Tides
- Fault-motion Monitor
- Metrological Application (Absolutedistance Measurement)

Geophysical Instruments

- Laser Strainmeter (1 Linear and 2 Shear, Resolution ~10⁻¹³)
- **3 100m Absolute-length Interferometer (Accuracy**

 $\sim 0.1 \mu m / 100 m$)

• Superconducting Gravimeter (Resolution $\sim 10^{-11}$ m/s²)

100m Laser Strainmeter Achievements at present

- Most sensitive strain observation at 1-100mHz with an iodine-stabilized 532nm laser (freq. stability of 10⁻¹³)
- Earth tides and Earth's fundamental free oscillations have been clearly observed. [×10⁻⁵]

21

Recent Study of Kamioka Geophysical Instruments

• M9.0 Sumatra Earthquake (2004 Dec.26)

100m Laser Strainmeter:

First few hours after the earthquake: Continuous Data taken After the first few hours: Sporadic Data taken

Superconducting Gravimeter:

All the time after the earthquake: Data taken

Now under analyses

3rd Generation: LCGT

Large-scale Cryogenic Gravitational-wave Telescope

Near Future project from 1997

Status of LCGT

• Submitted the budget request last month (2006~2012)

http://www.icrr.u-tokyo.ac.jp/gr/gr.html GWADW 2004 (Aspen) Kazuaki Kuroda JGRG14 2004 Nov. (Kyoto) Masaki Ando

LCGT Site Planned

Characteristics and Parameters of LCGT

- Interferometer Configuration: Broad Band Resonant Sideband Extraction
- 2 Parallel Interferometers in the Same Vacuum Duct
- Suspension Point Interferometers

•	Baseline Length:	3km
•	Mirror Substrate:	∲25cm, 30kg, Sapphire
•	Temperature of Mirror:	20K
•	Laser Power:	150W
•	Stored Power:	780kW
•	Observational Band Width:	30~1000Hz
•	Maximum Sensitivity:	$3 \times 10^{-24} / \text{Hz}^{1/2}$
•	Observable Distance:	174Mpc (Average)

Vibration Isolation

Test mass of LCGT is connected to a cooling system by a heat link that introduces mechanical noise.

A suspension point interferometer is Introduced to maintain high attenuation of seismic and mechanical noise without degrading high heat conductivity.

LCGT Sensitivity

R&D (1) Status of TAMA 300

Specification

Past data taking (DT)

	Period	Obs. Time	Main Target
DT1	1999 8/6~8/7	11h	Establishment of calibration
DT2	1999 9/17~9/20	31h	First event search
DT3	2000 4/20~4/23	13h	Improved sensitivity
DT4	2000 8/21~9/4	167h	100-h data
DT5	2001 3/2~3/10	111h	24-h full-time observation
DT6	2001 8/1~9/20	1038h	1000-h data
DT7	2002 8/31~9/2	25h	Recycling
DT8	2003 2/14~4/15	1158h	International coincidence run
DT9	2003/4 11/28~1/10	557h	Automatic operation

Sensitivity in DT9

Recycling gain: 4.5 Extended control band width for the laser frequency Improved strain sensitivity: $h = 1.7 \times 10^{-21}$ /Hz^{1/2} @1kHz

Recent TAMA300 Displacement

Noise Hunting in the Michelson Part

Noise source
Electronics: PD, Servo filter
Scattered light: PO, End chamber

Improvement in the Michelson part

1e-09

1e-10 1e-11 Displacement [m/Hz^{1/2}] 2004/1/29 1e-12 PO removal, **Dark WFS** 1e-13 2004/2/05 $4PD \rightarrow 1PD$, 1e-14 servo filter improved 2004/2/12 1e-15 **PD** modified 1e-16 2004/2/28 Scattered light rejection by plate 2004/4/23 10 Scattered light rejection by damper

GWADW (Aspen) Jan. 20, 2005 "Underground interferometers in Japan"

100

1000

Frequency [Hz]

10000

100000

Status of TAMA300, (II) Seismic Attenuation System (SAS)

Now assembling at NAOJ

TAMA noise 10⁻⁵ Displacement noise [m/Hz^{1/2}] **10⁻⁷** 10⁻⁹ 3m FP prototype **10**⁻¹¹ (with damping in the air, 3m FP prototype (without damping in vacuum **10**⁻¹³ Electronics nois **10**⁻¹⁵ **10⁻²** 10^{-1} **10**² 10⁰ 10¹ Frequency [Hz] Expected Isolation @4Hz 10^{-8} m/Hz^{1/2} \rightarrow 10^{-11} m/Hz^{1/2} **Expected RMS velocity** $3.7\mu m/s \rightarrow 0.3\mu m/s$

(SAS will be installed in 2005.)

Assembling is being delayed.

(1) Some of the Main Parts are not yet arrived.

(2) Some problem of vertical isolation parts: MGAS.

R&D (2)

"Making a Data Analysis Processor with Field Programmable Gate Array (FPGA)"

ECRS 2004 (Florence) SATO Nobuaki et al. (Submitted to Int'l. J. of Mod. Phys. A)

A Current Computer System for Gravitational wave Event Search

If we do not have a PC cluster, how do we analyze data?

 Some analysis consumes most of CPU time for FFT calculations or

Special Purpose Hardware connected to one PC for personal use.

More than 16 PCs are connected.
 Parallel Computing Library: (for example) MPI.

Data Analysis Processor: Special Purpose Hardware with FPGA

Logic Circuit : into FPGA by software Data Communication through PCI

Calculations by Hardware Logic (For Example, FFT)

Remained part of a analysis program except FFT or other hardware logic.

Design: Hardware Description Language Implement: Design Software (of each FPGA Manufacturer)

several x \$100 for FPGA with million logic gates equivalent FPGA: rewritable ------ useful for making a prototype with try and error *GWADW* (Aspen) Jan. 20, 2005 "Underground interferometers in Japan"

To Speed up: Pipeline, and Stack Pipelines

: Pipeline Register

Ideally: after each 1 clock signal, output 1 processed data

FPGA: (X) MHz operation Needed # of floating point calculations with a usual computer #: N Pipeline#: Np

 $(X \cdot Np \cdot N)$ MFlops

Clock Signal

Other Applications of Data Analysis Processor

- On-line analyses
- Optics simulations for interferometers with 2 dim FFT
- Special purpose hardware besides FFT for offline analyses

Summary

- **LISM :** Confirmed advantage of underground site for stable operation
- **CLIO**: Under Construction
- (Geophysical 100m Laser Strainmeter System: continuous data taking)
- **LCGT** : Submitted the Budget Request of 2006

- R&D(1): TAMA (1) SAS now assembling
 (2) Noise hunting of scattered light with RMI configuration was finished.
- **R&D(2)** : Pipelined data analysis processor with FPGA

Thank you for your attention of Kamioka underground interferometers.

In the list of participants of this workshop, My affiliation and e-mail address are mistaken.

Error:

Sato, Nobuaki NAOJ sato@gravity.mtk.nao.ac.jp Correct: Sato, Nobuaki KEK saton@post.kek.jp

(Among 40 Japanese, one person can be Sato.)

Seismic Noise at Experimental Site

(1) Global, Regional Background

Microseismic (ocean origin 0.2Hz), less than 0.2Hz

(2) Wave excited near the surface

(3) Noise near the experimental site

Sound from the experimental system Wind in the tunnels above several 10Hz (Sensor in the soundproof room)

Main Parameters of LCGT

Laser

Nd:YAG laser (1064nm) Injection lock + MOPA Power : 150 W

Main Interferometer

Broad band RSE configurationBaseline length :3kmBeam Radius :3-5cmArm cavity Finesse :1500Power Recycling Gain :12Signal Sideband Gain :15Stored Power :0.78MWSignal band :200Hz

Vacuum system

Beam duct diameter : 90cm Pressure : 10⁻⁹ Torr

Mirror

Sapphire substrate			
+ mirror coating			
Diameter :	25cm		
Thickness :	18cm		
Mass :	30 kg		
Absorption Loss :			
20ppm/cm			
Temperature :	20 K		
$\mathbf{Q} = \mathbf{10^8}$			
Loss of coating :	10-4		

Final Suspension

Suspension (heat link) with 4 Sapphire fibers Suspension length : 40cm Fiber diameter : 1.5mm Temperature : 16K Q of final suspension : 10⁸

Goal Sensitivity of TAMA, CLIO, and LCGT

CLIO: Suspension 40cm, ϕ 150 μ m

LCGT: Old Parameter Mirror: 50kg Laser Power 75W

K.Yamamoto (ICRR, Univ.of Tokyo)

Status of TAMA (I) Noise Hunting in the Michelson Part

To TAMA-SAS

CLIO---- a Locked Fabry-Perot Interferometer

Displacement of CLIO

LCGT-- Optical configuration

(one of the two interferometers)

EM2

Detector configuration

