First Comparison Between LIGO & Virgo Inspiral Search Pipelines

Stephen Fairhurst on behalf of the LIGO-Virgo Joint Working Group

Gods

Many benefits of using multiple detectors

- decreased false rate
- increased sky coverage and live time
- obtain sky location and polarization
- independent detection on several continents

Also, many issues

- different sensitivities
- different sampling rates
- different search algorithms
- different formats for storing data, triggers

Goal of LIGO-Virgo joint working group

begin addressing the issues,
 so we are ready to reap the benefits

LIGO ± Virgo Mock Data Challenge

Exchange simulated LIGO and Virgo data containing Neutron Star inspiral injections

Analyze both data sets with three methods:

- LIGO pipeline
- Virgo Merlino pipeline
- Virgo Multi-Band pipeline

Fix common search parameters:

- Inspiral component mass range 1 to 3 M
- Template bank minimal match 95%
- SNR threshold 6
- Starting frequency 30 Hz for Virgo data, 40 Hz for LIGO data

Compare parameter recovery of injected events

Data Generation

3 hours of LIGO & Virgo noise

Design sensitivities with line features
 16384 Hz & 20 kHz

Inspiral events injected

2nd Order Post-Newtonian

26 in LIGO data (every ~400s)

distances 20, 25, 30, 35 Mpc masses 1.4-1.4 and 1.0-2.0 M Starting frequency 40 Hz

11 in Virgo data (every ~ 900s)

SNR = 10 , distance=24.83 Mpc masses 1.4 ± 1.4 M starting frequency 24 Hz

The LIGO Pipeline

- Split data into analysis chunks of overlapping segments.
 - Create template bank for each analysis chunk.
 - Filter data, record triggers if SNR above threshold.
 - Cluster triggers within duration of template, not between templates in the bank.

$$LIGO \pm f_{low} = 40 Hz$$

longest template = 45 s

segment length = 256s

$$Virgo \pm f_{low} = 30 Hz$$

longest template = 96 s

segment length = 512s

The LIGO pipeline for LIGO data

LIGO-G050057-00-Z

The Virgo Multi-band Pipeline

Initialization

- Spectrum (on 1800 s of noise)
- Grid of full frequency band (VIRTUAL) templates
- Grids of (REAL) templates for each frequency band

Processing

- Run synchronously each grid of REAL templates on data
 Data chunk twice the longest REAL template
- Check if any REAL template triggers
- Recombine associated VIRTUAL templates

Coherent sum of real templates outputs:

Dobtain VIRTUAL templates triggers

Cluster, in time and between templates

Trigger Production Comparison

	LIGO data	Virgo data
LIGO pipeline	~3500 Templates UWM Cluster (1 GHz Pentium II) 6 jobs => 6 time slices total time 46 h	~9500 Templates CalTech Cluster (Xeon 2.66 GHz) 3 jobs => 3 time slices total time 88 h
Virgo Multi- Band	~1950 (VIRTUAL)Templates Xeon 2 GHz 2 jobs => 2 mass space regions total time 15h	~6190 (VIRTUAL) Templates Xeon 2 GHz 7 jobs => 7 mass space regions total time 38 h
Virgo Merlino	2556 templates Cluster of 7 Xeon 1.7 GHz 8 jobs total time 16 h	8103 templates Cluster of 7 Xeon 1.7 GHz 23 jobs total time 48h

7

Trigger Comparison

Triggers are tagged atrue if time is within 20 ms of an injection

Noise triggers

True triggers

Noise triggers

True triggers

Virgo Multi-Band:

Due to clustering, at most one trigger per injection

LIGO Pipeline:

Many triggers per injection, use the one with highest SNR

Parameter Estimation (distance)

Virgo data

Injections recovered by all pipelines

some injections at 35 Mpc not seen

Strong correlation between recovered distances

Parameter Estimation (distance)

distance ratio: Virgo Merlino/LIGO pipeline

Injections recovered by all pipelines

some injections at35 Mpc not seen

0.8 1.0 1.2 1.4

distance ratio: Virgo Merlino/LI GO pipeline

Strong correlation between recovered distances

Parameter Estimation (time)

No correlation, Multi-Band spread 6 times larger than LIGO pipeline

Due to known (fixable) error in Virgo Multi-Band Analysis implementation

Parameter Estimation (mass)

Relatively large spread in recovered component masses.

 Dependent on precise placement of templates in grid.

Chirp mass recovered very accurately.

Virgo data

Post-processing (LIGO pipeline)

Achievements

Successfully exchanged and analyzed each others' data

- All pipelines ^afind^o the injected signals
- Wrote a trigger format translator

Parameter Estimation:

Strong correlation between recovered parameters

SNR

distance

chirp mass

Would like to reconcile remaining differences

around 10 % in worst case

leads to better understanding of all pipelines

The next step:

- Injection of astrophysical events, from given sky location
- Determine injection parameters using multiple instruments recover sky location

Parameter Estimation (SNR)

LIGO data

Virgo data

Same events detected, Strong SNR correlation between pipelines

Virgo data: All events found by both pipelines

LIGO data: 1 event missed by both pipelines + 1 missed by Virgo MB (near threshold)

Parameter Estimation (SNR)

SNR ratio: Virgo Merlino/LI GO pipeline

SNR ratio: Virgo Merlino/LI GO pipeline

Same events detected, Strong SNR correlation between pipelines

Virgo data: All events found by both pipeline

LIGO data: 1 event missed by both pipelines + 1 missed by Virgo MB (near threshold)

Also for Virgo flat search