Moscow State University Bilenko I.A. Lyaskovskaya N. Yu.

The investigation of thermal and nonthermal noises in fused silica fibers for **Advanced LIGO** suspension

G050086-00-R

# Advanced LIGO limitation factors: mechanical noises in the mirror suspension system

• Equilibrium thermal noise – can be obtained by Fluctuation-Dissipation theorem:

$$S_x^2(\omega) = \frac{4kTH(\omega)}{m^{*2}\left(\left(\omega^2 - \omega_0^2\right)^2 + \frac{\omega^2\omega_0^2}{Q^2}\right)}$$

• Results achieved on the fused silica fibers suspension is promising:

 $H \sim \frac{1}{Q_0}$   $Q_0^{silica, best} > 10^8$  (P.Willems V.Mitrofanov, et.all 2002)

#### Excess mechanical noise is possible!

Stationary and non-stationary fluctuations can exists.

- Has been observed on the bar gravitational wave antennae
- Has been measured in stressed inhomogeneous solids (*Dykhne et. all Physica A241 94 1997*)
- Investigated experimentally in LIGO team (*P.Saulson A.M.Gretarsson, in press*].
- Observed by MSU group in the LIGO suspension models (tungsten and steel wires)

## Noise in the suspension wire (fiber)



 $E_{kT}^{violin} \approx 10^{-21} E_{elastic}^{fiber}$ 

 - if there is some mechanism of the "energy diffusion" from the elastic (static) form to the oscillatory (kinetic), then the noise of non-thermal origin may appear. Noise in the suspension wire (fiber) – method of measurement



 $m^* \ll M$  $\Rightarrow \Delta x >> \Delta X$ 

- Let us to monitor oscillation the wire (fiber) instead of the test mass motion (Braginsky 1994)

- It is interesting to observe amplitude variations during

 $\Delta t \ll \tau^*$ 

#### Excess noise in the steel wires

Has been detected in the samples from the material used in Initial LIGO under high stress:

Fundamental violin mode amplitude variation over the time t = 0.2 s

$$\overline{A_i} \cong \sqrt{\frac{2kT}{m^*\omega^2}} \sqrt{\frac{2t}{\tau^*}}$$

 $\Delta A_i > 5A_i: 1-20 \text{ events/10 hours observed on some samples under stress >50% of breaking value Relaxation time: <math>\tau^* \approx 10 \text{ s}$   $\left(Q_0^{\text{steel}} \approx 3 \times 10^4\right)$ Sensor: He-Ne laser based Micelson interferometer Best sensitivity achieved:  $\Delta x_{\min} \cong 2 \times 10^{-11} \text{ cm} / \sqrt{Hz}$ corresponds:  $\Delta E_{\min} \approx 0.1 \text{ kT}$  (Ageev, Bilenko, Braginsky 1998)

### Excess noise in the fused silica fibers

Goals:

• Keep high quality factor of the fiber:

$$Q_0^{silica} >> Q_0^{steel}$$

- reduce recoil losses
- minimize fiber contamination
- Measure the amplitude variations over the time short as compared to ringdown time. Desired sensitivity:

 $S_x^{\min} \approx 10^{-13} cm / \sqrt{Hz}$ 

• Check for non-Gaussian distribution of the amplitude variations

# Measurement of the noise in the fused silica fibers – approaches tested and denied:

• Single pass He-Ne based optic :

 $S_x^{HeNe-1\,pass} \approx \frac{\lambda}{2} \sqrt{\frac{h\omega}{W}} = 5 \times 10^{-13} \, cm \, / \sqrt{Hz} > 10^{-13} \, cm \, / \sqrt{Hz}$ 

 $\delta \omega \sim \delta x$ 

Optical microcavities ("twin balls")
based sensor -

electrostatic sealing is inevitable

 Fabry-Perot with intermediate sphere (semi-transparent mirror) mode matching is hard-hitting

# Fabry-Perot with a mirror welded into the sample

- Finesse: F = 50...100
- Maximum sensitivity:

 $S_x^{\min} \approx \frac{\lambda}{2F} \sqrt{\frac{h\omega}{W}} = \frac{3 \times 10^{-15} cm}{\sqrt{Hz}}$ 

• Quality factor achieved:

 $Q = 10^5 \dots 10^7$ 



# Silica fiber with support and mirror





#### Oscillation modes tested



Violin-like mode:  $f = 400 \div 760 Hz$  $Q = 1 \times 10^5 \div 3 \times 10^6$  Mirror-swinging mode:  $f = 1 \div 2 \, kHz$  $Q = 5 \times 10^6 \div 2 \times 10^7$ 

#### Installation diagram



## Installation picture



## **Typical mirror oscillations spectrum** (analyzer binwidth 4 Hz).



#### Measurements results

• Best obtained sensitivity:

 $S_x^{\min} \cong 9 \times 10^{-14} \, cm \, / \sqrt{Hz} \qquad (f \ge 2 \, kHz)$ 

- Sensitivity in the violin-like mode domain:  $S_x^{500Hz} \leq 10^{-12} cm / \sqrt{Hz}$
- Relaxation time for violin-like mode:  $\tau^* \approx 600 \, s \qquad \left(Q_0^{silica} \approx 10^6\right)$

Minimum amplitude variations measured over t = 0.1 s

corresponds to:



### Sample management

- 1. Fabrication (welding)
- 2. Installation, optic adjustment, pumping out the tank
- 3. Data recording (night time, record length 1-5 h, up to 10 records/sample)
- 4. Applying the makeweight (for some samples), more data recording
- 5. Sample tensile testing

#### Record example



#### Data processing procedure

- 1. Obtaining signals proportional to the amplitudes of selected modes.
- 2. Filtering and digitizing with sample rate 100 l/s, averaging with t = 0.1 s
- 3. Applying the "veto" using the local seismometer information
- 4. Estimation of the average amplitude variation over 0.1 *s*, plotting a distribution
- 5. Selection of the "candidate evens", test for coincidence with control channels, replotting distribution
- Obtained: 90 hours of "clear" records for 9 samples from 50 to 180  $\mu m$  in diameter stressed from ~4% to ~50% from breaking value.

#### Amplitude variations distribution



Record on sample Q21:  $N_0 = 45986$ 

#### $\Delta x = \sigma / 10$

 $\sigma$  =

## Alternative representation – *Energy innovation* histogram pair of quadrature amplitude have to be recorded:

 $\eta_i^2 \equiv \left[A1_i - A1_{i-1}\right]^2 + \left[A2_i - A2_{i-1}\right]^2$ 



Energy innovation threshold, kT

A1,A2 record made on sample Q21 for comparision porpose

## Results summary

| Test | Sample | Diameter                  | Mode  | Quality             | Obs.  | Noise                | Nr. of | Nr. of |
|------|--------|---------------------------|-------|---------------------|-------|----------------------|--------|--------|
| set  | code   | and applied               | freq. | factor              | time  | floor                | can-   | excess |
| Nr.  |        | load(% of                 | [Hz]  |                     | (sec) |                      | didate | events |
|      |        | breaking stress           | and   |                     |       |                      | events | proved |
|      |        | for this sample)          | type  |                     |       |                      |        |        |
| 1    | Q2     | $180 \ \mu m, 4\%$        | 1087m | $2 \times 10^{6}$   | 17000 | $5 	imes 10^{-2}$    | 62     | 0      |
| 2    | Q4     | $120 \ \mu m, 8\%$        | 762v  | $3.4	imes10^6$      | 7450  | $1.5 \times 10^{-2}$ | 7      | 0      |
| 3    |        |                           | 2319m | $1 	imes 10^7$      | 31300 | $4 	imes 10^{-2}$    | 48     | 0      |
| 4    | $Q_5$  | $90\mu m, 15\%$           | 1538m | $7.4	imes10^6$      | 14400 | $4 \times 10^{-2}$   | 26     | 0      |
| 5    | $Q_6$  | $70\mu m, 19\%$           | 1932m | $2 	imes 10^7$      | 23600 | $1 \times 10^{-2}$   | 0      | 0      |
| 6    | Q9     | $85\mu m, 16\%$           | 748v  | $1.4 \times 10^{6}$ | 6700  | $3	imes 10^{-2}$     | 17     | 0      |
| 7    |        |                           | 1980m | $1 	imes 10^7$      | 5050  | $5 	imes 10^{-2}$    | 1      | 0      |
| 8    | Q9     | $85\mu m, 19\%$           | 759v  | $1.9	imes10^6$      |       |                      |        |        |
|      |        |                           | 2197m | $1.3	imes10^7$      | 33450 | $5	imes 10^{-2}$     | 0      | 0      |
| 9    | Q11    | $70\mu m, 24\%$           | 1600m | $1.4	imes10^7$      | 16750 | $2 \times 10^{-2}$   | 0      | 0      |
| 10   | Q11    | $70\mu m, 29\%$           | 1747m | $1.3	imes10^7$      | 18250 | $2 \times 10^{-2}$   | 0      | 0      |
| 11   | Q11    | $70\mu m, 35\%$           | 1946m | $9	imes10^6$        | 16500 | $3	imes 10^{-2}$     | 0      | 0      |
| 12   | Q11    | $70\mu m, 42\%$           | 2083m | $5	imes 10^6$       | 15850 | $6	imes 10^{-2}$     | 0      | 0      |
| 13   | Q20    | $75\mu m, 20\%$           | 624v  | $8.2 	imes 10^5$    | 2400  | $3	imes 10^{-2}$     | 2      | 0      |
|      |        |                           | 1852m | $8.5	imes10^6$      | 2400  | $5 	imes 10^{-2}$    | 0      | 0      |
| 14*  | Q20    | $75\mu m, 21\%$           | 627v  | $8.0 	imes 10^5$    | 4800  | $3	imes 10^{-2}$     | 5      | 0      |
|      |        |                           | 1861m | $8.5	imes10^6$      | 4800  | $5	imes 10^{-2}$     | 0      | 0      |
| 15   | Q21    | $60\mu m, 33\%$           | 450v  | $1.3 	imes 10^5$    | 28200 | $2 \times 10^{-2}$   | 28     | 0      |
|      |        |                           | 2130m | $5	imes 10^6$       | 28200 | $6	imes 10^{-2}$     | 2      | 0      |
| 16   | Q25    | $50\mu m, \sim 50\%^{**}$ | 404v  | $1 \times 10^{5}$   | 8750  | $1 \times 10^{-2}$   | 3      | 0      |
|      |        |                           | 1811m | $8.5	imes10^6$      | 8750  | $9	imes 10^{-2}$     | 0      | 0      |
| 17*  | Q25    | $50\mu m, > 50\%^{**}$    | 413v  |                     | 14550 | $1 \times 10^{-2}$   | 11     | 0      |
|      |        |                           | 1860m |                     | 14550 | $9	imes 10^{-2}$     | 0      | 0      |

#### Conclusions

✓ Affordable installation for investigation of mechanical noise in fused silica fiber has been designed. Best displacement sensitivity is:  $S^{min} \sim 0 \times 10^{-14}$  are  $\sqrt{H_{\pi}}$ 

$$S_x^{\text{mm}} \cong 9 \times 10^{-14} \, cm \, / \, \sqrt{Hz}$$

- Non-Gaussian (excess) mechanical noise hasn't been observed at the achieved sensitivity level.
- Extrapolation of this result to the Advanced LIGO suspension shows promise that this type of noise will not affect the detector sensitivity at the level:

$$\Delta x_{gr} > A_L \approx \overline{A}_{\sqrt{\frac{2t}{\tau^*}}} \frac{m_m}{M_L} \cong 1 \times 10^{-17} \, cm$$

✓ In order to investigate the noise in the suspension with better resolution both, the quality factor of violin-like mode and the sensitivity of the readout system should be improved