

S4 Data Quality

John Zweizig LIGO/Caltech

LIGO-G050197-00-E

- Many sources
 - » ELOG

LIGO

- » CDS/Epics channels (state vector, overflow counts, etc...)
- » DMT
 - Science monitor (burstMon, SenseMon, StochMon, PulsarMon)
 - Generic data watchers (TimeMon, PSLmon, glitchMon, etc)
- » Offline processing
- Requirements
 - » Low latency
 - <1hr for "online" analysis
 - ~1-2 weeks for offline analysis
 - » Ease of use machine readable
- DQ segment list compilation (currently) done by hand (Keith).
- Automated evaluation/compilation highly desireable (S5?)

Data Quality Segments

- Detector characterization concurrent with science running.
- Data quality segments compiled at the end of each week of running:
 - » **v00**: Current science mode segment list
 - » **v01**: Week 1 science segments with preliminary data quality.
 - » **v02**: Week 1-2 science segments with preliminary data quality.
 - » v03: Week 1-3 science segments with preliminary data quality
 - » v04: Week 1-4 science segments with preliminary data quality
 - » v05-vNN: Further refined data quality flags full run.
- Segment lists available from: http://gallatin.physics.lsa.umich.edu/~keithr/S4DQ/

LIGO

Data Quality Flags

Recommended data quality flags

- » OUTSIDE_S4
- » OUT_OF_LOCK
- » INJECTION_BURST (INSPIRAL, PULSAR, STOCHASTIC)
- » CALIB_LINE_DROPOUT
- » ADC_OVERFLOW
- To be evaluated.
 - » DUST

LIGO

- » HIGH_MICROSEISM
- » HIGH_PIXEL_FRACTION_1KHZ (2KHZ)
- » 120HZ_UPCONVERSION
- » TCS_SERVO

Calibration Line Dropouts

- Calibration line injection fails
 occasionally
- Added directly to DARM_CTRL – feeds into GW channel!
- Line dropouts found by line tracking (Gaby et al.).
- Second check by notching calibration lines and looking for glitches (JGZ).
- Dropout classes:
 - » 1 second
 - » Single sample
 - » Others???

ADC Overflows

- ADC Overflow counts kept by FE processors
- DQ flags generated from minute trends – 60s Time resolution.
- Channels tested
 - » AS1-4 photodiodes, I and Q
 - » POB1-2 photodiodes I and Q phases
 - » REFL1-2 photodiodes I and C

H1:LSC-AS_Q with 100Hz hi-pass filtering near AS1_Q saturation event at GPS 793728755

LIGO

LIGO

BurstMon Cluster Fraction

- Cluster fraction is a measure of noise gaussianity.
 - » Run with 1kHz & 2kHz bandwidth
 - » gaussian noise pixels distributed uniformly over t-f plane → $f_{pixel} \sim 0.13$
 - » Increasing cluster fraction indicates non-gaussian noise.
 - » FOMS indicate it is a good indicator of deteriorating noise.
 - » DQ flags demand f_{pixel} > 0.5 for t>5min.
- Safety???

120 Hz Upconversion

S4 DQ Dead-Times (weeks1-3)

FLAG	H1	H2	L1
Injections	13279 (0.9%)	13604 (0.9%)	12822 (1.0%)
Calib Line Dropouts	168 (<.1%)	360 (<.1%)	283 (<.1%)
ADC Overflow	1080 (<.1%)	3840 (0.3%)	3300 (0.3%)
Dust	50430 (3.4%)		38994 (3.0%)
High µSeism			39315 (3.1%)
Pixel Fraction (1kHz)	23880 (1.6%)	12900 (0.9%)	43800 (3.4%)
Pixel Fraction (2kHz)	17640 (1.2%)	262020 (18%)	342180 (27%)
120Hz Up-Conversion	35554 (2.4%)		
TCS Servo	9362 (0.6%)		
Total Science Data	1484845	1473266	1288070*

*) L1 total time adjusted for OUT_OF_LOCK, OUTSIDE_S4 segments