Recycling Cavities Degeneracy Problems and Solution

Yi Pan¹, Guido Müller²

¹ Department of Physics, California Institute of Technology ² Department of Physics, University of Florida

March 23, 2005

Livingston, LA March 2005

LIGO-G050215-00-Z

Problems associated with degenerated recycling cavities

- Power Recycling Cavity & RF Sidebands
- Signal Recycling Cavity & Signal Sidebands

Numerical simulation of a simplified dual-recycle IFO

- Tools (Modal expansion) & Simplified IFO model
- Quantitative description of the problem & Hints on solutions

A possible solution (change geometry of SR cavity)

- Add a lens: practical problems
- Move MMT in: preliminary design

Fundamental Problem with Degenerated Cavities

→ all higher order modes resonant
 Imperfections will scatter light into HOM
 HOM's will build up and steal energy
 from the fundamental mode

Toy Model for Power Recycling

Include thermal distortions and we are asking for a disaster

Problems with RF-sidebands in degenerated recycling cavity

- Reduces build up of RF-sideband easily by a factor 2!
- Apparent impedance mismatch will increase intensity in reflected field
- HOM-content will cause severe spatial mode mismatch between RF-sidebands and carrier
- Degeneracy distores alignment and Bullseye signals
- Puts additional requirements on thermal compensation

Problems with Signal sidebands: Detailed model

SRC in AdvLIGO is degenerate

- Fresnel Length $r_F = \sqrt{\lambda N l} \simeq 3.3 mm \ll w_m \simeq 6 cm$
- Guoy phase (Gaussian beam) $\eta_{rc} = \arctan \frac{L_{rc}}{\pi w_0^2/\lambda} = 4.7 \times 10^{-4}$ SR cavity HM Phase Width $\Delta \phi = 4.4 \times 10^{-2} \implies \eta_{rc} \ll \Delta \phi$

Problem: sensitive to mirror figure error & thermal aberration

- Weak diffraction coupling => Geometric optics regime
 Figure error sampled coherently, large phase front distortion
- Close eigenvalues of optical modes (Hermite-Gaussian)
 Strong mode mixing under perturbation
- Geometric optics estimation [E. Ambrosio et al]
 1% SNR loss requires <1nm r.m.s. figure error

4

• Mode structure analysis carried out by simulation

Simulation results

Deferential curvature error in ITMs (3nm r.m.s. figure error)

- Significant gain with non-degenerate SRC (Guoy phase \sim 0.6)
- Not practical: g-factor ~ 0.001

Beam size: $28\mu m$ at waist; $47\mu m$ at SRM. Rayleigh length: 2mm

• First exited mode resonant when Guoy phase cancels SRC detuning

7

More results

Deferential curvature error in ITMs; Narrow band

More results

ITM curvature error (1.5nm) & SRM mode (4,0) error (1.5nm)

Livingston, LA March 2005

9

Mode matching between recycling cavities and arm cavities changes with thermal lens in ITM and BS substrates

Difficult to predict and priorities of TCS should be

- optimize beam size with ITM TCS
- optimize contrast with BS TCS
- Not optimize mode matching of PRC or SRC

New design can optimize mode matching w/o changing RF-frequencies (Move PR2 and PR3).

Example: Thermal lens in ITM

Compensate thermal lens in ITM substrates:

Assume thermal lens of up to 2 km:

- Move PR2 and PR3 by only 4 cm!
- Beam size on mirrors at least 1.5 mm
- g-factor between 0.3 .. 0.7

Future work

Fit in LIGO Vacuum envelope Other Possible Design:

- Model Thermal lensing in new design (Melody)
- Calculate Alignment and Bullseye-Signals
- Pushing and lobbying ...

Summary

Discussed Disadvantages of unstable recycling cavities

- → Reduces RF-sidebands inside IFO
- \rightarrow Increases reflected intensity
- \rightarrow Jeopardizes alignment signals
- → Reduces Signal!

Discussed design of stable recycling cavities

- \rightarrow Optimizes mode matching between RC's and arms
- → Maximizes Signal
- \rightarrow Well defined alignment and Bullseye signals