

Experimental update from the 40m team

40m TAC meeting

May 13, 2005

O. Miyakawa, Caltech and the 40m collaboration

LIGO- G050265-00-R

LIGO Caltech

Caltech 40 meter prototype interferometer

Objectives

- Develop lock acquisition procedure of detuned Resonant Sideband Extraction (RSE) interferometer, as close as possible to Advanced LIGO optical design
- Characterize noise mechanisms
- Verify optical spring and optical resonance effects
- Develop DC readout scheme
- Extrapolate to AdLIGO via simulation
- etc.

2003

Sept. Installation of Four TMs and BS:*done* **Oct.** Lock of FP Michelson *:done*

2004

Feb. Installation of Power Recycling Mirror (PRM) ,Signal Recycling Mirror (SRM) :done
June. Installation Mach-Zehnder to eliminate sideband of sideband :done
Oct. DRMI locked using Double Demodulation(DDM) :done
Nov. Both arms locked with off-resonance :done

2005

RSE :in progress

AdLIGO signal extraction scheme

- Arm cavity signals are extracted from beat between carrier and f_1 or f_2 .
- Central part (Michelson, PR, SR) signals are extracted from beat between f₁ and f₂, not including arm cavity information.

5 DOF for length control

Port Dem. **L**_ **I**_s L Freq. **ETMy** -3.8E-9 -1.2E-3 -1.3E-6 -2.3E-6 SP f₁ 1 -4.8E-9 AP f, 1.2E-8 1.3E-3 -1.7E-8 1 $f_1 \times f_2$ -1.7E-3 -3.0E-4 -3.2E-2 -1.0E-1 SP 1 -6.2E-4 $f_1 \times f_2$ 1.5E-3 7.5E-1 7.1E-2 AP 1 3.6E-3 2.7E-3 4.6E-1 -2.3E-2 PO $f_1 \times f_2$ 1 ITMv **ETMx** PRM sy BS ITMx Laser Common of arms : $L_{+}=(L_{x}+L_{y})/2$ $: L_{=} L_{x} - L_{y}$ Differential of arms sx Power recycling cavity : $I_{+}=(I_{x}+I_{y})/2$ SRM **Michelson** $: I_{=} I_{x} - I_{y}$ PO Signal recycling cavity : $I_s = (I_{sx} + I_{sy}) / 2$ SP ^I AP

Signal Extraction Matrix (in-lock)

Lock Acquisition of Detuned RSE

- resonance on arm cavity (but disturbed by sidebands resonance)
- Lock acquisition After lock: *I*: dither @ 1200 Hz \rightarrow DDM@AP *I*₊ : <u>33MHz@SP</u> \rightarrow DDM@SP I_s: DDM@PO $\rightarrow DDM@PO$ 40m meeting, May 2005 LIGO- G050265-00-R
- locked central part

Looking for good signal for lock acquisition

LIGO- G050265-00-R

DRMI lock using double demodulation with Unbalanced sideband by detuned cavity

August 2004

DRMI locked with carrier resonance (like GEO configuration)

November 2004

•DRMI locked with sideband resonance (Carrier is anti resonant preparing for RSE.)

Typical lock acquisition time : ~10sec Longest lock : 2.5hour

Problems

- 1. Too fast mirror motion on Xarm due to poor ITMX damping(?)
- 2. High recycling gain of ~15 produces large coupling between two arms
- 3. Very High combined finesse of ~18000
- 4. Slow sampling rate of 16kHz for direct lock acquisition

We have two steps.

- 1. Middle resonance of carrier using "Offresonant DC lock" scheme ...done
- 2. Remove offset to have full resonance of carrier ...in progress

Off-resonant DC lock scheme for arm cavity

Off resonant DC transmission Arm lock with DRMI

DRMI with single arm lock

- Lock acquisition time ~1 min
- Can be switched to RF signal
- Full carrier was stored in each arm cavity separately

Both arms lock with DRMI

- Lock acquisition time ~10 min
- Lasts ~ 10 min
- Can be switched to RF signal
- ~200 times dynamic range of carrier resonance

>>Needs second
transmitted PD (low
noise/high dynamic range)

LIGO- G050265-00-R

The way to full RSE

e2e SIMULATION: 40m/AdvLIGO package optical configuration

IFO with Arms

IFO Central part

e2e SIMULATION: 40m/AdvLIGO package

DARM AP @ 166 MHz • E2E validation of DC fields 10^{10} comparing with TWIDDLE e2e I signal I signal e2e Q signal results: good agreement ! Twiddle I signal Twiddle Q signal 10^{9} • E2E transfer functions E2E simulations (and comparison **TWIDDLE** with TWIDDLE ones) of DOF amplitude 01 at SP, AP and PO shaking the end mirrors with *white noise* at different demodulation frequencies : E2E (33,133,166,199) MHz 10^{7} Q signal **TWIDDLE** Example: DARM @ AP 166 MHz 10^{2} 10^{3} 10^{4} 10^{5} **TWIDDLE** and E2E comparison frequency (Hz)

DC Readout at the 40m

- Homodyne detection (via a DC readout scheme) has been chosen as the readout scheme for AdLIGO.
 - » DC Readout eliminates several sources of technical noise (mainly due to the RF sidebands):
 - Oscillator phase noise
 - Effects of unstable recycling cavity.
 - The arm-filtered carrier light will serve as a heavily stabilized local oscillator.
 - Perfect spatial overlap of LO and GW signal at PD.
 - » DC Readout has the potential for QND measurements, without major modifications to the IFO.
- We can use a 3 or 4-mirror OMC to reject RF sidebands.
 - » Finesse ~ 500
 - » In-vacuum, on a seismic stack.
- The DC Detection diode
 - » an aluminum stand to hold a bare photodiode, and verified that the block can radiate 100 mW safely.

OMC Beam Steering : A preliminary layout is ready to go

Existing in-vac seismically isolated optical table

Mike Smith has designed a compact, monolithic MMT, similar to our input MMT. We'll be using spherical mirrors.

 This will actually be the second PZT steering mirror. The first mirror after the SRM will also be a PZT steering mirror.

• Ready for a review in late this month