G050320

Thoughts on HAM Isolation HEPI + 1 Stage Internal System Brian Lantz, July 11 2005 HAM system which is Lower performance, cheaper, and simpler.

HEPI outside, single 6-DOF stage inside.

Stage mechanics like the 2nd stage ETF (optics table).

Stage instrumentation like the 1st stage ETF.

What kind of performance might we expect?

G050320

Current ETF design

Structure like stage 2

Sensors and actuators like stage 1 (6 actuators, 6 cap. disp, 3 STS-2 seis. 6 L-4C geo.)

Simpler because - only I stage - no cutout for stage I - L-4C < GS-I3

2

Removing the GS-13s

3

These get eliminated (2 of 6 are shown) LIGO parts bigger because of vacuum cans

G050320

Passive Isolation

Stage is 1400 kg, with 600 kg of payload (slightly more than ETF + req) Set Horizontal mode at 1.4 Hz, 10 Hz isolation of 50 pendulum length of 130 mm total length of 175 mm (LZMP = 22 mm) diameter of 4.3 mm stress, with 1 mm lateral motion = 27% yield (about as long, slightly thinner than BSC at 5.9 mm)

Set Vertical mode at 2 Hz, 10 Hz isolation of 25

proposed	reference
<u>HAM blade</u>	stg 0/1 BSC blade
.40 m	.42 m
10 mm	13 mm
I.05e5 N/m	2.28e5 N/m
e 31 N	68 N
6.5e3 N	11.9e3 N
62 mm	50 mm
7.4e8 Pa (35	% of 0.2% yield)
	proposed <u>HAM blade</u> .40 m 10 mm 1.05e5 N/m e 31 N 6.5e3 N 62 mm 7.4e8 Pa (35

Conclusions

We should get about 2e-11 m/rtHz at 10 Hz (within x2), which is much worse than the original req.

We can get about 3e-11 m/rtHz at 1 Hz, which is about the same as the original req. and the 1-10 Hz rms is small (~1e-10 meters)

The single layer system is much simpler, and probably rather cheaper.

ETF performance in Z

