Searching for gravitational-wave bursts with the Q Pipeline

Shourov K. Chatterji LIGO Science Seminar 2005 August 2

- Matched filter: project data stream onto known waveform
- Cross-correlation: project data stream from one detector onto data stream from another
- Time-frequency: project data stream onto a basis of waveforms designed to cover the targeted signal space

- For many potential burst sources, we do not have sufficiently accurate waveforms to permit matched filtering
- Cross-correlation requires at least two detectors and is complicated by the differing responses of non-aligned detectors
- Search for statistically significant excess signal energy in the time-frequency plane
- Can be extended to multiple detectors in a way that coherently accounts for differing response

- Multiresolution basis of minimum uncertainty waveforms
- Resolves the most significant structure of arbitrary bursts
- Encompass maximal signal and minimal noise
- Provides the tightest possible time-frequency bounds, minimizing accidental coincidence between detectors
- Overcomplete basis allowed
- We are interested in detection, not reconstruction

Parameterization of unmodeled bursts

O Characteristic amplitude, ||h||:

$$||h||^{2} = \int_{-\infty}^{+\infty} |h(t)|^{2} dt = \int_{-\infty}^{+\infty} |\tilde{h}(f)|^{2} df$$

@ Matched filter signal to noise ratio, $\rho_{0:}$

$$\rho_0^2 = \int_0^\infty \frac{4|\tilde{h}(f)|^2}{S_h(f)} \, df$$

Normalized waveform, ψ

$$h(t) = \|h\|\psi(t)$$
$$\tilde{h}(f) = \|h\|\tilde{\psi}(f)$$

Parameterization of bursts

Time, frequency, duration, and bandwidth:

$$t_{c} = \int_{-\infty}^{+\infty} t |\psi(t)|^{2} dt \qquad \sigma_{t}^{2} = \int_{-\infty}^{+\infty} (t - t_{c})^{2} |\psi(t)|^{2} dt$$
$$f_{c} = 2 \int_{0}^{+\infty} f |\tilde{\psi}(f)|^{2} df \qquad \sigma_{f}^{2} = 2 \int_{0}^{+\infty} (f - f_{c})^{2} |\tilde{\psi}(f)|^{2} df$$

Time-frequency uncertainty:

$$\sigma_t \sigma_f \ge \frac{1}{4\pi}$$

Quality factor (aspect ratio):

$$Q = \frac{f_c}{\sigma_f}$$

Tiling the search space

Fractional signal energy lost due to mismatch between arbitrary minimum uncertainty burst and nearest basis function:

$$\mu(\delta\tau,\delta\phi,\delta Q) \simeq \frac{4\pi^2\phi^2}{Q^2}\,\delta\tau^2 + \frac{2+Q^2}{4\phi^2}\,\delta\phi^2 + \frac{1}{2Q^2}\,\delta Q^2 - \frac{1}{\phi Q}\delta\phi\,\delta Q$$

- Tile the targeted space of time, frequency, and Q with the minimum number of tiles to enforce a requested worst case energy loss
- Logarithmic spacing in Q
- Logarithmic spacing in frequency
- Linear spacing in time

- Naturally yields multiresolution basis
- Generalization of discrete wavelet tiling

Linear predictive whitening

- Whiten data by removing any predictable signal content
- Greatly simplified our subsequent statistical analysis
- Predict future values of time series

$$\tilde{x}[n] = \sum_{m=1}^{M} c[m]x[n-m]$$

Error signal is the signal of interest

$$e[n] = x[n] - \tilde{x}[n]$$

Linear predictive whitening

- Training: determine the filter coefficients by least squares minimization of the error signal
- Leads to the well known Yule-Walker equations
- The solution of this problem is well known, robust, and computationally efficient algorithms are available
- Filter order M should be longer than the longest basis function of the measurement
- Training time should be much longer than typical burst

Example whitened spectrum

LIGO-G050332-00-Z

Zero-phase whitening

- Linear predictive whitening introduces arbitrary phase delays between detectors that could destroy coincidence
- Zero-phase delay can be enforced by constructing a filter with symmetric coefficients that yields the same magnitude response
- Zero-phase high pass filtering is also possible by first causal and then acuasal filtering of the data

LIGO-G050332-00-Z

The Q transform

Project whitened data onto multiresolution basis of minimum uncertainty waveforms

$$X(\tau,\phi,Q) = \int_{-\infty}^{+\infty} x(t) w(t-\tau,\phi,Q) e^{-i2\pi\phi t} dt$$

Alternative frequency domain formalism allows for efficiency computation using the FFT

$$X(\tau,\phi,Q) = \int_{-\infty}^{+\infty} \tilde{x}(f+\phi) \,\tilde{w}^*(f,\phi,Q) \,e^{+i2\pi f\tau} \,df$$

Frequency domain bi-square window

$$\tilde{w}(f,\phi,Q) = \begin{cases} \left(\frac{315}{128\sqrt{11}}\frac{Q}{\phi}\right)^{1/2} \left[1 - \left(\frac{fQ}{\phi\sqrt{11}}\right)^2\right]^2 & |f| < \frac{\phi\sqrt{11}}{Q}\\ 0 & \text{otherwise} \end{cases}$$

The Q transform

Normalized to return characteristic amplitude of well localized bursts

$$\int_{-\infty}^{+\infty} h(t;\tau,\phi,Q) \, w(t-\tau,\phi,Q) \, e^{-i2\pi\phi t} \, dt = \|h\| e^{i\theta}$$

Returns average power spectral density of detector noise if no signal is present

$$\left\langle \left| N(\tau,\phi,Q) \right|^2 \right\rangle = \frac{1}{2} \int_0^\infty S_n(f) \left| \tilde{w}(\phi-f) \right|^2 df$$

Alternative normalization permits recovery of the total energy of non-localized bursts

$$\int_{0}^{\infty} \int_{-\infty}^{+\infty} |X(\tau, \phi, Q)|^2 \, d\tau \, d\phi = ||x||^2$$

Example Q transform

LIGO-G050332-00-Z

Define the normalized energy,

$$Z = |X|^2 / \langle |X|^2 \rangle$$

For white noise, this is exponentially distributed

$$f(Z) dZ = \exp(-Z) dZ$$

Ø Define the white noise significance:

$$P(Z' > Z) = \exp(-Z)$$

Define the estimated signal to noise ratio:

$$\hat{\rho}^2 = Z - 1$$

Predicting performance

Maximal false rate achieved if entire information content of data is tested:

$$\langle N(\hat{\rho}, f_s, T) \rangle = \exp(-\hat{\rho}^2 - 1) f_s T$$

Measured signal to noise ratio:

$$\hat{\rho}^{2} = \frac{\|h\|^{2} + |N(\tau, \phi, Q)|^{2} + 2\|h\| |N(\tau, \phi, Q)| \cos \theta}{\langle |N(t, \phi, Q)|^{2} \rangle} - 1$$

True signal to noise ratio:

$$\rho^2 = \frac{\|h\|^2}{\left\langle |N(\tau,\phi,Q)|^2 \right\rangle}$$

Monte Carlo expected performance based on exponential distribution of normalized energies and uniform distribution of relative phase

Ideal signal to noise ratio recovery

Ideal receiver operating characteristic

Coherent Q transform

- Gravitational wave signal in N collocated detectors:
 $X_n(\tau, \phi, Q) = h(\tau, \phi, Q) + N_n(\tau, \phi, Q)$
- Form weighted linear combination of Q transforms
 $X^{(N)}(\tau, \phi, Q) = \sum_{n=1}^{N} C_n(\tau, \phi, Q) X_n(\tau, \phi, Q)$
- Obtermine weighting coefficients to maximize expected signal to noise ratio:

$$C_n(\tau, \phi, Q) = \left(\sum_{m=1}^{N} \frac{1}{\langle |N_m(\tau, \phi, Q)|^2 \rangle}\right)^{-1} \frac{1}{\langle |N_n(\tau, \phi, Q)|^2 \rangle}$$

Coherently combines Q transform from collocated detectors while taking into account frequency dependent differences in their sensitivity

Coherent Q analysis pipeline

- Implemented in Matlab
- Compiled into stand alone executable
- Runs in 1.75 times faster than real time on a single 2.66 GHz Intel Xeon processor
- Foreground search performed in 1.5 hours on cluster of 290 dual processor machines using the Condor batch management system
- Code is freely available at http://ligo.mit.edu/~shourov/q/

- Open implementation perform as advertised?
- Simple tests of performance
- Compare with Monte Carlo predictions
- Inject sinusoidal Gaussian bursts with random center times, center frequencies, phases, Qs, and signal to noise ratios
- Into stationary white noise
- Into simulated detector noise

Worst case energy loss is never exceeded in 40000 trials

LIGO Science Seminar - 2005 August 2

Signal to noise ratio recovery

Signal to noise recovery shows very good agreement with predicted performance

Measurement accuracy

Central time and frequency of sinusoidal Gaussians are recovered to within 10 percent of duration and bandwidth

All signals injected with a signal to noise ratio of 10, but otherwise random parameters

LIGO-G050332-00-Z

- Simulated detector noise at LIGO design sensitivity
- Does not model
 non-stationary
 behavior of real
 detectors
- Provides end-toend validation of pipeline, including linear predictive whitening
- Data set for benchmarking search algorithms

Good agreement with maximal white noise false rate assuming full information content is tested

Receiver Operating Characteristic

Shows very good agreement with the performance of a templated matched filter search for sinusoidal Gaussians.

Aggregate receiver operating characteristic for sinusoidal Gaussians

LIGO-G050332-00-Z

LIGO Science Seminar - 2005 August 2

- Second LIGO science run
- Collocated double coincident Hanford data set
- Weigher threshold required for false rate similar to triple coincident search
- Susceptible to correlated environmental noise
- Identical response permits coherent search and strict consistency tests
- ~ 2.3 times greater observation time than triple coincident search

Data quality and vetoes

- Acoustic coupling responsible for coincident events
- Periods of high acoustic noise excluded from analysis
- Q pipeline applied to microphone data to identify and exclude 290 additional acoustic events
- Also exclude times with missing calibration, anomalous detector noise, photodiode saturation, timing errors, etc.
- Remaining observation time is 645 hours

Background event rates

- Artificial time shifts used to estimate background event rate from random coincidence
- Does not estimate
 background event rate
 due to environment
- Statistical excess of events in unshifted foreground
- Interesting statistical excess of events at ±5 second lag
- Output Output

Foreground event rates

- 10 consistent events survive in the unshifted foreground
- Statistically significant excess foreground relative to accidental background
- Environmental origin, gravitational or otherwise

The most significant event defines the search sensitivity

But, first check to see if they are gravitational waves!

Most significant event: instrument artifact

LIGO-G050332-00-Z

Fourth most significant event: acoustic

LIGO-G050332-00-Z

Eighth most significant event: seismic

- No gravitational-wave bursts are found!
- What was the sensitivity of the search?
- Obtermine frequentist upper bound on the rate of gravitational-wave bursts from an assumed population.
- Based on detection efficiency of population at the normalized energy threshold of the "loudest event"
- If we repeat the experiment, the stated upper bound exceeds the true rate in p percent of experiments:

$$r_p = \frac{-\ln(1-p)}{T\varepsilon(Z)}$$

- Isotropic populations of identical bursts:
- Simple Gaussian bursts
- Sinusoidal Gaussian bursts
- Simulated black hole merger waveforms from Baker, et al.
- Simulated core collapse waveforms from Zwerger Mueller, et al., Dimmelmeir, et al., and Ott et al.

Simulated gravitational-wave bursts

Detection efficiencies

Upper limits

Comparison with first LIGO science run

LIGO-G050332-00-Z

Comparison with triple coincident search

LIGO-G050332-00-Z

Comparison with IGEC collaboration

Comparison with ROG collaboration

- Third science run
 - Decreased acoustic, seismic, and RF coupling
 - Factor of 2 to 5 improvement in sensitivity
 - ~25 percent increase in observation time
- Fourth science run
 - Order of magnitude improvement in sensitivity
 - Within a factor of a few of design sensitivity
 - ~25 percent less observation time
- Fifth science run
 - One year of observation at design sensitivity!
 - Commencing Fall 2005!

- More extensive consistency testing
- Oetector specific search parameters
- Evaluate performance for non-localized bursts
- Clustering of events in the time-frequency plane
- Hierarchical search
- Waveform reconstruction and parameter estimation
- Directed search for bursts
- Oetector characterization and veto studies

Detector characterization and vetoes

- Q Pipeline shows good prospects for detector characterization and veto investigations.
- Currently performing a full search of the Hanford level 1 reduced data set from S3 and S4 to identify potential veto channels.
- Overloping a tool to post-process environmental and auxiliary interferometer channels around the time of interesting events.
- Output Note to provide a set of tools for control room use during S5.

- Quasi-coherent search to target a position of interest on the sky using two or more detectors
- Design and implementation by Sahand Hormoz, University of Toronto, Caltech SURF student
- Based on method proposed by Julien Sylvestre
- Two detectors do not provide complete information
- Search over a two-dimensional parameterization of waveform space
- Maximize signal to noise ratio

Directed search example

⁵⁰

- Three or more non-aligned detectors provide sufficient information to reconstruct signal.
- Work with Albert Lazzarini, Patrick Sutton, Massimo Tinto, Antony Searle, and Leo Stein.
- Generalization of the approach of Gursel-Tinto to more than three detectors
- Construct linear combinations which cancel the signal
- Test for consistency with noise
- Search over the sky

Coherent search example

Coherent search example sky map

- Sine-Gaussian burst in simulated detector noise
- From the galactic center

- Test difference between H1 and H2 transforms for consistency with detector noise
- Test difference between arbitrary detectors after accounting for detector response and a assumed sky position
- How can calibration error and/or incorrect sky position be taken into account?
- Issues being studied by Sahand Hormoz
- Intend to apply to S3 and S4 double coincident search of Hanford data