Double NS: Detection Rate and Stochastic Background

Tania Regimbau virgo/Nice

The Model

> a very small fraction of massive binaries remains bounded after 2 supernova explosions
> the resulting system consist of a:

1. partially reaccelerated pulsar
2. young pulsar with

- same period evolution (magnetic dipole spin down) as normal radio pulsars
- same kick velocity as millisecond pulsars (for which the supernova didn't disrupt the system either)

The Galactic Coalescence Rate

$$
v_{c}(t)=\lambda \beta_{N S} f_{b} \int_{\tau_{0}}^{t-\tau_{*}-\tau_{0}} R_{*}\left(t-\tau_{*}-\tau\right) P(\tau) d \tau
$$

$R_{*}(t)$: star formation rate (Rocha-Pinto et al., 2000)
λ : fraction of formed stars in the range $9-40 \mathrm{M}_{\square}\left(\lambda=\int_{9}^{40} \mathrm{mAm}^{-2.35} \mathrm{dm}\right)$
f_{b} : fraction of massive binaries formed among all stars
$\beta_{\text {NS }}$: fraction of massive binaries that remain bounded after the second supernova $P(\tau)$: probability for a newly formed $\mathrm{NS} / \mathrm{NS}$ to coalesce in a timescale τ
τ_{0} : minimum coalescence time
τ_{*} : mean timescale required for the newly formed massive system to evolve into two NSs

The Galactic Star Formation Rate

> previous studies:

The star formation rate is proportional to the available mass of gas as:

```
R* (t)\propto\operatorname{exp}(-\alphat)
```


$>$ present work:

The star formation history is reconstructed from observations:

- ages of 552 stars derived from chromospheric activity index
(Rocha-Tinto et al., 2000)
- enhanced periods of star formation at 1 Gyr, 2-5 Gyr and 7-9 Gyr probably associated with accretion and merger episodes from which the disk grows and acquires angular momentum
(Peirani, Mohayaee, de Freitas Pacheco, 2004)

Numerical Simulations ($\left.\mathbf{P}(\tau), \tau_{0}, \beta_{\mathrm{NS}}\right)$

initial parameters:

- masses: M_{1}, Salpeter IMF, M_{1} / M_{2} : probability derived from observations
- separation: $P(a) d a=d a / a$ between $2-200 R_{\text {Roche }}$
- eccentricity: P(e)de = 2ede

$>$ evolution of orbital parameters due to mass loss (stellar wind)

> statistical properties

- $\beta_{N S}=2.4 \%$ (systems that remain bounded after the second supernova)
- $P(\tau)=0.087 / \tau$ (probability for a newly formed system to coalesce in a timescale
$\tau)$
- $\tau_{0}=2 \times 10^{5} \mathrm{yr}$ (minimum coalescence time)

Population Synthesis (f_{b})

$>$ single radio pulsar properties:

- $\mathrm{N}_{\mathrm{p}} \sim 250000$ (for 1095 observed)
- birth properties

	mean	dispersion
$\mathbf{P}_{0}(\mathrm{~ms})$	240 ± 20	80 ± 20
$\ln \tau_{0}(\mathbf{s})$	11 ± 0.5	3.6 ± 0.2

$>$ second-born pulsar properties:

- period evolution: alike single radio pulsars
(magnetic dipole spin down)
- kick velocity: alike millisecond pulsars
(in the low tail of the distribution because the system survives to the supernova)
- $\mathrm{N}_{\mathrm{b}}=730$ (for two observed)

$>\frac{N_{p}}{N_{b}}=\frac{1}{\beta_{N S}} \frac{1-f_{b}}{f_{b}}+2 \frac{1-\beta_{N S}}{\beta_{N S}} \rightarrow f_{b}=0.136$

The Local Coalescence Rate

$>$ weighted average over spirals $\left(\mathrm{f}_{\mathrm{S}}=65 \%\right)$ and ellipticals $\left(\mathrm{f}_{\mathrm{E}}=35 \%\right)$

$$
v_{c}=v_{S}\left(f_{S}+f_{E} \frac{v_{E}}{v_{S}} \frac{L_{S}}{L_{E}}\right)=3.4 \times 10^{-5} y r^{-1}
$$

$>$ same f_{b} and β_{NS} as for the Milky Way
$>$ spiral galaxy coalescence rate equal to the Milky Way rate:

$$
v_{\mathrm{S}}=(1.7 \pm 1) \times 10^{-5} \mathrm{yr}^{-1}
$$

$>$ elliptical galaxy star formation efficiency estimated from observations - color \& metallicity indices
(Idiart, Michard \& de Freitas Pacheco, 2003)

$$
v_{E}=8.6 \times 10^{-5} \mathrm{yr}^{-1}
$$

Bulk of stars formed in the first 1-2 Gyr.
The pairs merging today were formed with
long coalescence times

The Detection Rate

coalescence rate within the volume $V=4 / 3 \pi D^{3}$

$$
v(<\mathrm{D})=v_{c} \frac{L_{\mathrm{V}}}{L_{\mathrm{MW}}} \text { with } \mathrm{V}=\frac{4}{3} \pi \mathrm{D}^{3}
$$

counts of galaxies from the LEDA catalog:
-10^{6} galaxies (completness of 84% up to $B=14.5$)

- inclusion of the Great Attractor
intersection of Centaurus Wall and Norma Supercluster corresponding to 4423 galaxies at $V z=4844 \mathrm{~km} / \mathrm{s}$
$>$ maximum probed distance and mean expected rate (S/N=7; false alarm rate=1) :

VIRGO	LIGO	LIGO Ad
13 Mpc	14 Mpc	207 Mpc
1 event/148 yr	1 event $/ 125 \mathrm{yr}$	6 events/yr

Possible Improvements in the Sensitivity...

$>$ gain in the VIRGO thermal mirror noise band (52-148 Hz):

reduction of all noises in the band by a factor 10
(Spallicci, 2003; Spallicci et al., 2005)

> gain throughout VIRGO full bandwidth

reduction of pendulum noise by a factor 28 , thermal mirror 7 , shot 4 (Punturo, 2004; Spallicci et al., 2005)

- maximum probed distance $=100 \mathrm{Mpc}$
- detection rate $=1.5$ events $/ \mathrm{yr}$
$>$ use networks of detectors:

LIGO-H/LIGO-L/VIRGO

(Pai, Dhurandhar \& Bose, 2004)

- false alarm rate $=1$, detection probability $=95 \%$
- maximum probed distance: 22 Mpc
- detection rate: 1 events / 26 yrs

The Stochastic Background

> Two contributions:

- cosmological: signature of the early Universe inflation, cosmic strings, phase transitions...
- astrophysical: superposition of sources since the beginning of the stellar activity:
systemes binaires denses, supernovae, BH ring down, supermassive $B H$, binary coalescence ...
> characterized by the energy density parameter:

$$
\Omega_{g w}(f)=\frac{d \rho_{g w}(f)}{\rho_{c} d(\ln f)}=\frac{10 \pi^{2} f^{3}}{3 H_{0}^{2}} S_{g w}(f)
$$

300000 yrs: photons decoupled ($\mathrm{T}=0.2 \mathrm{eV}$)

Population Synthesis

$>$ redshift of formation of massive binaries (Coward et al. 2002)

$$
P_{f}\left(z_{f}\right)=\frac{R_{f}\left(z_{f}\right)}{\int_{0}^{5} R_{f}\left(z_{f}\right) d z_{f}} \text { with } R_{f}\left(z_{f}\right)=\lambda_{p} \frac{R_{f}^{*}}{1+z} \frac{d V}{d z}
$$

$>$ redshift of formation of NS/NS

$$
z_{b}=z_{f}-\Delta z\left(\tau_{b}\right) \text { with } \tau_{b}=10^{8} \mathrm{yr}
$$

> coalescence time

$$
P_{\tau}(\tau)=\frac{0.087}{\tau} \text { with } \tau \in\left[2 \times 10^{5} ; 2 \times 10^{10} \mathrm{yr}\right]
$$

$>$ redshift of coalescence

$$
\tau=\frac{1}{H_{0}} \int_{z_{c}}^{z_{b}} \frac{d z}{(1+z) E(z)}
$$

$>$ observed fluence

$$
f_{v_{o}}=\frac{1}{4 \pi d_{L}^{2}} \frac{d E_{g w}}{d v_{0}}=\frac{K v_{o}^{-1 / 3}}{4 \pi r^{2}\left(z_{c}\right)\left(1+z_{c}\right)^{4 / 3}}
$$

$$
\Omega_{g w}(f)=\frac{v_{0} F_{v_{0}}}{\rho_{c} c^{3}} \text { with } F_{v_{0}}=\frac{N_{\text {DNS }}}{N} \sum_{i=1}^{N} f_{v_{0}}^{i}
$$

Three Populations

The duty cycle characterizes the nature of the background.

$$
D(z)=\int_{0}^{z}<\tau>\left(1+z^{\prime}\right) R_{c}\left(z^{\prime}\right) d z^{\prime}
$$

$<\tau>=1000 \mathrm{~s}$, which corresponds to 96% of the energy released, in the frequency range [10-1500 Hz]

$>\mathrm{D}>1$: continuous (87\%)

The time interval between successive events is short compared to the duration of a single event.

$>\mathrm{D}<1$: shot noise

The time interval between successive events is long compared to the duration of a single event

> D ~1: popcorn noise

The time interval between successive events is of the same order as the duration of a single event

Detection of the Continuous background

The stochastic background can't be distinguished from the instrumental noise.
The optimal strategy is to cross correlate the outputs of two (or more) detectors.
> Hypotheses:

- isotrope, gaussian, stationary
- signal and noise, noises of the two detectors uncorrelated
> Cross correlation statistic:
- combine the outputs using an optimal filter that maximizes the signal to noise ratio

$$
Y=\int \tilde{s}_{1}(f) \tilde{Q}(f) s_{2}(f) d f \text { with } \tilde{Q}(f) \propto \frac{\gamma(f) S_{g w}(f)}{P_{1}(f) P_{2}(f)}
$$

$>$ Signal to Noise Ratio:

$$
(S / N)^{2}=\frac{9 H_{0}^{4}}{8 \pi^{4}} T \int_{0}^{\infty} \frac{\Gamma^{2}(f) \Omega_{g w}(f)}{F^{2} f^{6} P_{1}(f) P_{2}(f)}
$$

Detection of the Continuous background

S/R for 2 co-located and co-aligned interferometers after 1yr of integration for the first three generations of interferometers:

IFOs	VIRGO LIGO I	LIGO Ad	EGO
S/R	0.006	1.5	25

Conclusions and Future Work

Local Events:

> Coalescence rate: $3.4 \times 10^{-5} \mathrm{yr}^{-1}$
> detection rate:

- first generation: $1 \mathrm{ev} / 125 \mathrm{yr}$
- second generation: 6ev/yr

Cosmological Events:

> continuous background
. critical redshift: $z=0.13$

- $\Omega_{\max } \sim 3.5 \times 10^{-9}$ at 920 Hz
- detectable with cross correlation techniques with the second generation of detectors
> popcorn noise
- critical redshift: $z=0.015$
- $\Omega_{\max } \sim 4.8 \times 10^{-8}$ at 1300 Hz
- detectable with the PEH algorithm (Coward et al.) ??

