

ACIGA High Optical Power Test Facility

Chunnong Zhao for ACIGA

LIGO-G050515-00-Z

Contents

- Status of High Optical Power Test Facility (HOPTF)
- Planned Experiments

ACIGA

Australia Consortium for Interferometric Gravitational Astronomy

Primary Institutions:

University of Western Australia University of Adelaide Australian National University

Affiliate Institutions:

Monash University CSIRO-Optics

AIGO Location

• AIGO is located 90km north of Perth in Western Australia

HOPTF Configuration

Central Station

Objectives of ACIGA HOPTF

- Investigating problems associated with high optical power GW detectors
 - Thermal lensing and compensation
 - Parametric instabilities and control
- Low noise 80m base line advanced interferometer
 Demonstrate noise performance of high power interferometers
 Evaluate thermal compensation
 Determine noise limit set by the control of parametric instabilities
- Advanced gravitational wave interferometer detector
 - **AIGO** the Southern Hemisphere link in the global network

First Problem: Thermal Lensing

- Absorption in mirror substrate and coating creates thermal gradient
- Thermal gradients distort refractive index of substrate ⇒ lens effect

 Thermal expansion changes mirror curvature ⇒ lens effect

Power Loss and Reduced Sensitivity

Power Absorbed Substrate = 1W

Simulation: Jerome Degallaix

ACIGA's high optical power facility

- 100W input power
- Up to 500kW circulating power with power recycling
- Sapphire test mass
- Fused silica thermal compensation plate

HOPTF Test 1: Reverse Substrate

Placement of the ITM Sapphire substrate inside the cavity

Input Test Mass a-axis Sapphire 100mm diameter 46mm thickness End Test Mass m-axis Sapphire 150mm diameter 80mm thickness

HOPTF Test 1: Cold Cavity

Half-symmetric resonator Input Power: ~7W Cavity Waist size: ~8.7mm Cavity Waist Position: 0m

Input Test Mass ROC = O

End Test Mass ROC = 720m

HOPTF Test 1: Hot Cavity

Thermal Gradient: Jerome Degallaix

Thermal compensation

HOPTF Test 1: thermal compensation

Thermal Gradient: Jerome Degallaix

HOPTF Test 1: Thermal compensation

Thermal Gradient: Jerome Degallaix

• 10 W injection locked laser developed by Adelaide installed

• The 80-meter cavity has been locked to the laser

HOPTF Test1

Simple Suspension with sapphire ITM

Simple Suspension with sapphire ETM

Measured beam size after the ETM as a function of the heating power to the CP

Next Step of Thermal Lensing Experments

- Input full power into the 80-meter cavity
- Detect the wavefront distortion using the Hartmann sensor installed
- HOPTF Test 2
- HOPTF Test 3

HOPTF Test 2

- TEST 2: ITM substrate is outside the high power cavity
- Optical distortion will be dominated by the absorption in the HR coatings on the ITM and ETM

HOPTF Test 3

 TEST 3: Power Recycling Mirror to increase the power inside the cavity

Second Problem: Parametric Instabilities (PI)

- PI depends on a product of:
 - Optical Q-factor
 - Mechanical Q-factor
 - HOM Q-factor
 - Optical Cavity Power

Gingin HOPTF Prediction

Acoustic Mode 160kHz

Optical mode, LG41

Overlap Factor $\Lambda = 0.174$

Gingin HOPTF Prediction

• HOPTF 80m cavity should observe parametric instability if sapphire test mass Q-factor is $2x10^8$.

What do we expect to see

R=1	Q= infinity	Unstable
R=0.1	~10% increase in Q _m	Detectable
R=0.01	~1% increase in Q _m	Hard to detect

First goal: detect modes, measure Q, predict R

How can we do

Expected at HOPTF

- **Current set up** (internal substrate, magnets glued on): F=1000, 5W into cavity: $\Delta Q=1\%$ if Q=10⁷.
- $\Delta Q = 10\%$ if $Q = 10^8$
- Test 2: (external substrate) F=2000,
 $\Delta Q=7\%$ if Q=107,
 $\Delta Q \sim 40\%$ if Q ~ 5. 107.
- East Arm PI Test: (capacitive actuation), Q=10⁸, R>1 at 10W input power

Advanced Vibration Isolation

- 2 stages of ultralow frequency horizontal preisolation
- vertical ultralow frequency pre-isolation
- self damping
- Euler springs
- Best isolation system in the world!

UWA Vibration Isolation and Suspension System

AIGO Future—long base line detector

