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Why Total Reflecting Mirrors? 

Experimental data from Yamamoto and Numata show a very high 
coating loss angle even at low temperature. Subsequent experiments 

for reducing coating losses gave a 50% improvement but it is not
obvious if the optical specifications are still good.
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 Radiation Pressure
 Quantum Limit
 Wire Creep
 Absorption Asymmetry
 Acoustic Noise
 Magnetic Noise
 Distorsion by laser heating
 Coating phase reflectivity
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The Virgo design Thermal noise curve is evaluated with a Q~106,  
and the maximum expected Q, due to coating losses, is Q~2.5 107. 
Standard Quantum Limit is about a factor 100 below Virgo TN 
i.e. equivalent to a Q=1010 ; consequently, for reaching SQL 
sensitivity Q should improve by 1010/ 2.5 107~ 400- A bit difficult !! 
For this reason it is interesting to explore Coating-less Mirrors

This argument will 
become even more 
important if we want 
to go below SQL.



Some History

In 1970 Robert Forward (Hughes 
Lab.) build the first Interferometer 
for GW detection. It was equipped 
with Roof Prisms Mirrors. Arm 
length ~2m

Toraldo di Francia in 1965 proposes
flat Roof Prism for creating a stable
Radio Frequency cavity. Stability was
succesfully experimentally tested. 

Braginsky et al. Recently Published a paper on the use of Roof
Prism and Corner Cube mirrors in Fabry Perot cavities using
Antireflective Coatings . 



A further point: Gratings Technology (see recent
presentations at Einstein’s Week in Jena) it is improving
a-lot on losses (10-3) but does not work without Coatings

1) Capability of constructing a completely
Coatingless FP Cavity

2) Capability of constructing a completely
Coatingless Beam Injection system.

What are then the Missing things for creating a Very
Low Thermal Noise Fabry Perot Cavity?



Rotation Parabolas as exact reflectors for closed
geometrical optical trajectories
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No need of AR Coatings
No Beam Losses
The spherical mirror                                            
surface is matched to the                                                            
constant phase beam
surface curvature



Equivalence to Spherical mirrors of Rotation Parabolas as
reflectors for closed geometrical optics trajectories
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Reflective cavity with Asymmetric Arms
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Beam Splitter for Power Injection in the Parabolic
4 elements all-Reflective Cavity
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1) If α+β=π the trajectory inside the prism is closed and d=r. i.e. the 
trajectory is replicating itself.

2) If α+β=π and the trajectory A is parallel displaced, the inner 
trajectory is length invariant.

3) The only way for changing inner trajectory length is by rotating
the prism. Then we still have d=r but the trajectory does not close
and consequently does not replicate itself. This property can be
used for making inner trajectory resonating or antiresonating

Prism B-S Properties
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Optical Diagram of a 4 Elements Coatingless all-
reflective cavity
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The Classical Amplitudes U and B3

B3 =DδW+Cαin+EB4 

U=AδW+Bαin+CB4
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Resonance conditions and its consequences

B4 is connected to U by means of C coefficient i.e. Since the vacuum 
Vn  isalso entering from the port B4 it is relevant to understand the 
coupling between Vn and U i.e. the behavior of C coefficient as a 
function of Ω.
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The resonance conditions are:

C becomes :

+1 =Prism Resonance
-1 =Prism Antiresonance

Arm Resonance
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If the prism is antiresonant and the arms are in resonance, it follows 
that at Ω=0 there is no coupling Vn-U i.e. C=0.                                        
Then only Vn sidebands may couple to U.
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The Cavity Finesse

U=AδW+Bαin+CB4

Cavity Finesse can be evaluated by differentiating B with respect L1
and L2 and then making .For the sake of simplicity
we set the prism both in resonance (-) and in antiresonance (+);
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At Ω=0 we obtain the finesse                                    

Ponderomotive actions and thermal noise couple to U trough the 
term where δLi are both the mirror and prism displacements
produced by these two phenomena.
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Toward an interferometric application

If we close the port B3 with a mirror, then the vacuum B4 will be 
stopped and U will depend only by δW and αin
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B3 Mirror Thermal Noise

We have seen that C=0 for Ω=0; this means that under the choosen
resonance conditions ther is no carrier in B3 and if there is no 
carrier, sidebands, to first order, can not be produced. This is easily
seen by differentiating U with respect to L3:
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This means that we may put a normal mirror on B3 without
affecting total reflecting cavity thermal noise.



The Interferometer

U

LASER

If we inject in U a 
Squeezed Vacuum, we 
can beat SQL and 
obtain, in priciple a 
very performant ITF.



Beam Splitter for Power Injection in the 3 elements
Parabolic all-Reflective Cavity

Perhaps a more performant configuration
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Conclusions

Some Difficulties
1) The Parabolic and Beam Splitter prisms needs to have a 

remarkable Refraction Index omogeneity for avoiding higher 
mode production. At the moment  we may obtain  λ/1000 over 
10 cm thicknes of silica, enough for starting tests.

2) The Parabolic Prism edge should be very thin, some µm, 
otherwise both higher modes and beam losses will be produced. 
The design of a beam with zero intensity on the prism edge 
could be the solution.

A big Advantage                                                 
Without coatings the Prisms mechanical Q can be enormous 
even at room temperature; this solution could be instrumental 
also for future SQL beating ITF’s.  


