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Squeezing...

...in the gravitational wave detection band:

• Squeezed states

• Noise sources

• Results from the 2004 experiment

• The 2005 experiment

• Current results and limitations

• Summary
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Squeezed states of light

I. Squeezing

1ˆˆ ≥ΔΔ −+ XXThe EM field has QM fluctuations:

Requires squeezing in the GW detection band!

Use of squeezed states in Interferometric GW 
detectors first proposed in 1980 by Caves.

The production of squeezed states 
requires a non-linear process: 

Optical Parametric Oscillators (OPO) 

or

Optical Parametric Amplifier (OPA)  



OPO/OPA noise budget

VOUT
± (ω ) = Cs

±Vs
± (ω ) + ClVl

± (ω ) + n CpVp
± (ω ) + CΔ

±VΔ
− (ω )( ) 

 ↑               ↑                 ↑                  ↑                  ↑
Sqz.    ∝    Seed            Loss             Pump          Detuning             

Variance in the frequency domain
for the squeezed output:

For below threshold OPO
(without power in the seed beam):
n = 0 and Vs

± = 1

VOPO
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± (ω ) + Cl

Below threshold OPO is immune to laser 
noise, pump noise and detuning noise! 

(to first order)

Intra-cavity photon number@1064nm
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2004 Experiment

• Seed power was varied - transition 
from OPA to OPO

• OPO/OPA cavity locked to 1064nm 

• Homodyne phase locked using noise 
power locking [3][5].
– Noise power locking can be 

used to lock a vacuum state.

• Backscatter from PD  reduced using 
a Faraday Isolator

[3] Laurat et al PRA. 70 042315(2004), [5] McKenzie et al J.Opt B, accepted (2005)
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Reducing the seed power

McKenzie, Grosse, Bowen,Whitcomb, Gray, McClelland, Lam PRL. 93 161105 (2004)
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Zero Seed Power

• Was the lowest frequency squeezing 
result to date - at 300Hz.
– (previous lowest was 50kHz, 

Laurat et al PRA. 70
042315(2004)) 

• Covers SNL frequencies of first 
generation detectors

• Measurement limited at low 
frequencies by the stability of the 
unlocked OPO and homodyne ‘roll up’
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New layout 2005

Traveling wave cavity - Isolated from backscatter off PD
Resonant at pump frequency - effective pump power up to 12 W

New photodetector design. 

All (length) degrees of freedom locked!
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In the Lab
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In the Lab
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Current Results

Squeezing down to
~100Hz

Measured
squeezing strength:
~3dB at 500Hz

Inferred
squeezing strength:
~4.1dB at 500Hz
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Current limitations

• Currently, only moderate pump 
power (130mW) can be used due to 
cavity spatial mode instability

• Noise locking used to lock homodyne 
phase - Noise locking stability is poor 
in comparison to standard (coherent) 
locking techniques

• Beam pointing limits low frequency 
detection efficiency (coupling via 
inhomogenity of photo detectors) 

We need to adjust our cavity 
parameters (by a small amount) to 
ensure higher order spatial modes 
are not co-resonate with the TEM00

In the future we would like to phase 
lock a second laser with a frequency 
offset and use this to lock the 
harmonic - fundamental phase as 
well as the homodyne phase 

Employ fast steering mirrors in front 
of homodyne detection
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Summary squeezing

• Noise Coupling mechanism identified - the coherent fundamental field
• Below threshold OPO is immune to laser, pump and detuning noise to first order! 
• All length degrees of freedom locked, OPO cavity locks indefinately.  
• If this squeezed state (~3dB measured at 500Hz) could be implemented

– Improve current LIGO SNL strain sensitivity increase by
– Equivalent of turning up the laser power by a factor of 2

• Developing new generation of squeezer
– Operate at higher pump power - to generate larger amounts of squeezing 
– Inject second laser to replace noise locking loop

2
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Thermal noise and SQL

• Thermal noise in gravitational wave detectors

• Niobium flexure membrane as an inverted pendulum mirror suspension

• Experimental layout

• Frequency stabilisation

• Seismic isolation

• Summary
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• Current results and limitations



Thermal noise

II. Thermal noise and SQL
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Thermal noise of mirrors and suspensions will eventually limit the sensitivity
of gravitational wave detectors in their most sensitive frequency band

Thermal noise will also be a major impediment to reaching SQL sensitivity
with a table-top experiment as is planned at the ANU



Niobium Flexure Membrane

To investigate thermal noise
we use a niobium flexure membrane of 200µm width
as an inverted pendulum to support a mirror of 0.25g

(Thanks to Ju Li from UWA for the help with niobium flexure!)

Mirror

Limiters

Base
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Experimental layout
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Frequency stabilisation
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Zerodur reference cavity:

Finesse 6000

Suspended via two steel wire loops
from Marval18 cantilever springs

in high-vacuum envelope

Stand-off plates
for eddy-current damping
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~3.5m

Upper mass
3kg

Euler buckles

Rocking stage
50kg

Euler buckels

Penultimate mass
9kg
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Suspended breadboard (35kg)



Test cavity
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Magnification 100X



Preliminary results
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New Suspension Stage



Summary TN and SQL

• Measured thermal noise of a viscous damped system with Q=1550

• Move on to system with Q=45,000: structural damping?

• Design of torsion balance of about 1g to couple optical fluctuations to displacement
This opto-mechanical coupler will be based on a thin fused silica fiber
Design study based on 100µm steel wire

Towards the SQL:

•This torsion balance will be incorporated into arm-cavity Michelson interferometer

• Study of coating-free mirrors based on total internal reflection
to avoid coating thermal noise

SQL
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