Experiments towards beating quantum limits

Stefan Goßler for the experimental team of The **ANU** Centre of Gravitational Physics

LIGO-G050518-00-Z

I. Squeezing in the GW detection band

Kirk McKenzie, Malcolm Gray, Ping Koy Lam, David McClelland

II. Off-resonant thermal noise and the Standard Quantum Limit Conor Mow-Lowry, Stefan Goßler, Jeff Cumpston, Malcolm Gray, David McClelland

Squeezing...

... in the gravitational wave detection band:

- Squeezed states
- Noise sources
- Results from the 2004 experiment
- The 2005 experiment
- Current results and limitations
- Summary

The EM field has QM fluctuations:

The production of squeezed states requires a non-linear process:

Optical Parametric Oscillators (OPO)

or

Optical Parametric Amplifier (OPA)

Use of squeezed states in Interferometric GW detectors first proposed in 1980 by Caves.

Requires squeezing in the GW detection band!

OPO/OPA noise budget

Variance in the frequency domain for the squeezed output:

Intra-cavity photon number@1064nm

$$V_{OUT}^{\pm}(\omega) = C_s^{\pm} V_s^{\pm}(\omega) + C_l V_l^{\pm}(\omega) + \overline{n} C_p V_p^{\pm}(\omega) + C_{\Delta}^{\pm} V_{\Delta}^{-}(\omega)$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$
Sqz. \propto Seed Loss Pump Detuning

For below threshold OPO (without power in the seed beam): n = 0 and $V_s^{\pm} = 1$

$$V_{OPO}^{\pm}(\omega) = C_s^{\pm}(\omega) + C_l$$

Below threshold OPO is immune to laser noise, pump noise and detuning noise!

(to first order)

2004 Experiment

- Seed power was varied transition from OPA to OPO
- OPO/OPA cavity locked to 1064 nm
- Homodyne phase locked using noise power locking [3][5].
 - Noise power locking can be used to lock a vacuum state.
- Backscatter from PD reduced using a Faraday Isolator

[3] Laurat et al PRA. 70 042315(2004), [5] McKenzie et al J.Opt B, accepted (2005)

Reducing the seed power

McKenzie, Grosse, Bowen, Whitcomb, Gray, McClelland, Lam PRL. 93 161105 (2004)

- Was the lowest frequency squeezing result to date at 300 Hz.
 - (previous lowest was 50 kHz, Laurat *et al* PRA. **70** 042315(2004))

Covers SNL frequencies of first generation detectors

 Measurement limited at low frequencies by the stability of the unlocked OPO and homodyne 'roll up'

New layout 2005

Traveling wave cavity - Isolated from backscatter off PD Resonant at pump frequency - effective pump power up to 12 W

In the Lab

In the Lab

Current Results

Squeezing down to ~100 Hz

Measured squeezing strength: ~3dB at 500 Hz

Inferred squeezing strength: ~4.1dB at 500 Hz

- Currently, only moderate pump power (130 mW) can be used due to cavity spatial mode instability
- We need to adjust our cavity parameters (by a small amount) to ensure higher order spatial modes are not co-resonate with the TEM₀₀

 Noise locking used to lock homodyne phase - Noise locking stability is poor in comparison to standard (coherent) locking techniques

 Beam pointing limits low frequency detection efficiency (coupling via inhomogenity of photo detectors)

- In the future we would like to phase lock a second laser with a frequency offset and use this to lock the harmonic - fundamental phase as well as the homodyne phase
- Employ fast steering mirrors in front of homodyne detection

- Noise Coupling mechanism identified the coherent fundamental field
- Below threshold OPO is immune to laser, pump and detuning noise to first order!
- All length degrees of freedom locked, OPO cavity locks indefinately.
- If this squeezed state (~3dB measured at 500 Hz) could be implemented
 - Improve current LIGO SNL strain sensitivity increase by $\sqrt{2}$
 - Equivalent of turning up the laser power by a factor of 2

- Developing new generation of squeezer
 - Operate at higher pump power to generate larger amounts of squeezing
 - Inject second laser to replace noise locking loop

- Thermal noise in gravitational wave detectors
- Niobium flexure membrane as an inverted pendulum mirror suspension
- Experimental layout
- Frequency stabilisation
- Seismic isolation
- Current results and limitations
- Summary

Thermal noise

Thermal noise of mirrors and suspensions will eventually limit the sensitivity of gravitational wave detectors in their most sensitive frequency band

Thermal noise will also be a major impediment to reaching SQL sensitivity with a table-top experiment as is planned at the **ANU**

To investigate thermal noise we use a niobium flexure membrane of $200\,\mu$ m width as an inverted pendulum to support a mirror of 0.25 g

(Thanks to Ju Li from UWA for the help with niobium flexure!)

Experimental layout

Frequency stabilisation

Experimental layout

Suspended breadboard (35kg)

Test cavity

Preliminary results

Magnification 100X

Preliminary results

New Suspension Stage

Summary TN and SQL

- Measured thermal noise of a viscous damped system with Q=1550
- Move on to system with Q=45,000: structural damping?

Towards the SQL:

- Design of torsion balance of about 1g to couple optical fluctuations to displacement This opto-mechanical coupler will be based on a thin fused silica fiber Design study based on 100 µm steel wire
- Study of coating-free mirrors based on total internal reflection to avoid coating thermal noise
- •This torsion balance will be incorporated into arm-cavity Michelson interferometer

