

Design of Stable Power-Recycling Cavities

Volker Quetschke, Guido Mueller

University of Florida

10/05/2005

LIGO-G050526-00-Z

Table of Contents

- Stable vs. unstable recycling cavities
- Design of stable recycling cavity
- Design drivers
 - Spot size
 - Vacuum envelope
 - Seismic Isolation
 - Flexibility in mode matching
 - Alignment
 - Modulation frequency / linewidth effects
- Conclusions/Outlook

Advanced LIGO – arm cavities

Optimize mode matching(?)

Adv. LIGO LIGO marginally stable recycling cavities

Impact on LSC and ASC

Adv. LIGO stable recycling cavities

• Interferometer will be much easier to understand and debug

How? (mirror needed inside the Rayleigh range of the modes)

Solution 1:

Lens in ITM substrate

Problem:

Divergence angle: $\alpha \sim 6 \text{ cm} / 8 \text{ m} \sim 7 \text{ mrad}$ $\rightarrow \text{Waist: } w_0 = \lambda/\pi\alpha \sim 50 \text{ }\mu\text{m}$

Creates sub mm beam size on Recycling mirror (~ 290 GW/m²)

LIGO Stable Rec. Cavities – Solution 2

• Two mirror Recycling cavity

Problem: Divergence angle: $\alpha \sim 6$ cm/16 m ~ 4 mrad \rightarrow Waist: w₀ = λ/πα ~ 90 μm

Creates sub mm beam size on Recycling mirror (~ 80 GW/m²)

LIGO Stable Rec. Cavities – Solution 3

Design Drivers

- ✓ Spot Size
- Vacuum envelope
- Seismic Isolation
- Flexibility in mode matching
- Alignment
- Modulation frequency / linewidth effects
- ..

IGO

Vacuum Envelope

Top View: HAM 1

Vacuum Envelope

LIGO

Top View: HAM 1

Vacuum Envelope LIGO **Top View HAM 3 HAM 2** 99 ______ 48₂66 88₂60

Vacuum Envelope

Top ViewHAM 2HAM 3

Vacuum Envelope

Side Views from HAM 1

Design Drivers

- ✓ Spot Size
- ✓ Vacuum envelope
- Seismic Isolation
- Flexibility in mode matching
- Alignment
- Modulation frequency / linewidth effects
- ..

IGO

Seismic Isolation

Requirements on single PR-mirror¹:

- 3x10⁻¹⁶ m/rHz
 - Driven by sensitivity to frequency noise

Target stability:

- 3x10⁻¹⁷ m/rHz
 - Same suspension as Mode cleaner mirrors (triple pendulum)

Necessary changes for New Recycling cavity:

- Move large PR substrate in triple pendulum to MMT3 location
- First small PR mirror in MC-triple pendulum on IO-table
- Second small PR mirror in MC-triple pendulum on PR-table
- Mode matching from MC into Recycling cavity might add two additional small mirrors (single pendulum suspension)

¹ Sources: Seimic Isolation Subsystem Design Requirements Document E990303-03-D Advanced LIGO Systems Design T010075-00-D

Design Drivers

- ✓ Spot Size
- Vacuum envelope
- Seismic Isolation
- Flexibility in mode matching
- Alignment
- Modulation frequency / linewidth effects
- ..

IGO

Mode matching

Mode matching

Can we optimize the mode matching after measuring the thermal lens?

Yes!

Even without changing the length of the recycling cavity

How?

- Change distance between PR1 and PR2 until mode matching is optimized
- Compensate change in the length by moving also PR3

Alternative: Adaptive mode matching with thermally induced focal length changes

Vacuum Envelope mode matching PR1, PR3

LIGO

Top View:

Plenty of space for mode matching adjustments

Vacuum Envelope mode matching PR2

Top View

Plenty of space for mode matching adjustments

Design Drivers

- ✓ Spot Size
- Vacuum envelope
- Seismic Isolation
- Flexibility in mode matching
- Alignment
- Modulation frequency / linewidth effects
- ..

IGO

Alignment Issues

Question:

Do we need to worry about additional alignment d.o.f as we have now more mirrors?

- Arm cavities are equal, no difference
- Any difference in Recycling Cavity?

Alignment Issues

Alignment defined by arm cavity:

• Find position on PR1

GO

Propagation direction from PR1 to ITM1

Change in Input beam also requires adjustment of 3 d.o.f. in horizontal and 3 d.o.f. in vertical direction!

Other Option: Align input beam and only one of the PR mirrors.

Alignment sensing matrix: (Work in progress)

Calculate alignment sensing matrix for Advanced LIGO with and without stable recycling cavities

Intermediate (premature) results:

For Baseline Design:

• Difficult to distinguish between PR and ITM tilts (same Gouy phase)

For New Design:

- Same problem between PR1 and ITM tilts
- Easy to distinguish between PR2, PR3 tilts and ITM tilts

Preliminary conclusion:

Advantage for new design: Larger linear range in ASC-signals Disadvantage: ?

Design Drivers

- ✓ Spot Size
- ✓ Vacuum envelope
- Seismic Isolation
- Flexibility in mode matching
- Alignment
- Modulation frequency / linewidth effects
- ..

GO

Modulation Frequencies

Modulation frequency requirements

IGO

- 180 MHz must pass through MC and PRC and 9 MHz must be anti-resonant for the PRC (dictated by length of MC = 16.6m, FSR_{MC} = 9 MHz)
- The vacuum envelope changes length of PRC from 8.3 m to 8.3 m + 3*(16.35 m ± x) (x must be small to fit in HAM chamber)
- With x = 0.25 m => FSR_{MC} = 3.5 * FSR_{PR} FSR_{PR} = 2.57 MHz

Coupled PRC linewidth

 Does changing the length of the PRC have any influence on the linewidth of the coupled power recycling / arm cavity?

IGO

• No, the finesse of the Arm cavities dominate the PRC:

cavities dominate the PRC:
$$\underbrace{\underbrace{\$}}_{ArmC} \Delta v_{PRC} = \Delta v_{ArmC} \frac{1 - \left| \widetilde{r}_{ArmC}(0) \right|^2}{2}$$

- No influence of PRC length
- Power vs. frequency in the x-Arm cavity for both PRC length in a finesse plot:

Conclusions

Stable Recycling Cavity (SRC):

- Suppresses higher order modes of the RF-sidebands
- Increases Power in fundamental mode of sidebands
- (?) Improves alignment sensing (larger linear range of ASC signals)
- Adds flexibility for mode matching

Baseline Recycling Cavity:

- Fewer Components (SRC has more small mirrors, one less large mirror)
- Fewer triple suspensions

Costs:

- Hardware costs probably higher for stable recycling cavity
 - Should fit in current vacuum envelope
- Expect shorter commissioning time for stable recycling cavity design
 - Higher order mode contamination often limits diagnostics