

Rayleigh Scattering Mapping System

School of Physics, University of Western Australia

Australia – Italy Workshop on GW Detection 2005

LIGO-G050533-00-Z

Contents:

Introduction of ARSMS
 Scattering mapping examples
 Comparisons between scattering and absorption
 Conclusion
 Acknowledgement

Experimental Set-up

The ARSMS contains two subsystems:

- •Optical imaging subsystem
- •Mechanical motion control subsystem

Technique Parameters

• Translation:

Resolution: 0.05 mm

• Rotation:

Resolution: 0.3 degree (the diameter of sample is 150 mm)

• Scattering sensitivity:

0.5 ppm/cm (the laser power is 10 mw)

Advantages

- High resolution
- 3D images
- Rayleigh scattering intensity
- Mapping large-size test masses

Measurement and Data Processing

Examples:

Single images and 2D images

Examples:

Reconstructed 3D image

Comparisons between scattering and absorption Typical scattering and absorption^[1] **maps**

1. The optical absorption is measured using the photothermal deflection technique at Laboratoire des Matériaux Avancés, Lyon.

Comparisons between scattering and absorption

High scattering correlates with higher absorption.
Scattering structure is spatially displaced from a similar absorption structure.

Correlations between scattering and absorption

Absorption and scattering in sample 1:

In detail there is not a clear point to point correlation between scattering and absorption.

Correlations between scattering and absorption

Absorption and scattering in sample 2: The spatial displacements indicate that absorption centres and scattering centres are laid down during crystal growth at different distances from the solid liquid interface.

Conclusions:

• 2D and 3D scattering mappings reveal different features—the inhomogeneities and the point defects.

• Scattering and Absorption seem to be coming from different origins

• The ARSMS can ensure that an adequate low level of scattering is achieved for gravitational wave detectors and other precision applications.

• The ARSMS may provide data that can be utilized to improve the quality control of both single crystal and glass optical materials.

Acknowledgement

- **•LSC Optics Working Group**
- •VIRGO Jean-Marie Mackowski's Group
- •Australian Research Council
- •ACIGA
- •My Supervisors
- •My fellow students and colleagues

