Australia - Italy Workshop 2005 7th October 2005

AIGO

Pablo Barriga for AIGO group

AIG

LIGO-G050547-00-Z

ACIGA Mission

- High Optical Power Test optics in collaboration with LIGO
- Low noise 80m base line Demonstrate noise performance of high power interferometer
- Advanced gravitational wave

First in the Southern Hemisphere

Primary Institutions:

University of Adelaide Australian National University University of Western Australia

Affiliate Institutions:

Monash University CSIRO-Optics

Vacuum System

Single increment

3.5m high vacuum tanks

400mm diameter pipes? (R. De Salvo)

Input Laser

 Injection locked 10W Nd:YAG laser has been developed by The University of Adelaide.

- High power laser clean room near Class 100.
- Future laser >100W
 Talk by Peter Veitch

High Optical Power Mode Cleaner

- Astigmatism and thermal lensing calculations.
- Isolation system transfer function shows good performance.
- Control system design and implementation underway.

Test Masses

Fused Silica or Sapphire?

Start with small test masses ~10kg

Second stage 40kg (Advanced LIGO)

Rayleigh Scattering Measurements Talk by Zewu Yan

Sapphire Input Test Mass

Suspension System

Stage 1: Niobium Flexures **9** Stage 2 : Fused Silica Flexures

Isolation System

Robust isolation system

Built for heavy test masses

Talk by Jean Charles and Eu-Jeen

Digital Control

- Digital Control already under development.
- DSP based?
- LIGO EPICS?
- Is there a way of combining both?

Mode-Cleaner Geometry

Coating and Substrate Absorptions

50

45

40

35

Diameter [mm] 25 20

15

10

45

40

35

Diameter [mm] 25 20

15

10

5

0 0

High reflectivity coating absorption produces astigmatic thermal lensing. The spot ellipticity produce different distribution between X and Y axis.

used as output coupler the M2 diagonally transmitted beam produces strong astigmatic thermal lensing.

Eccentricity variation with Power

AIGO Future Interferometer

AIGO Future Interferometer

Actual Interferometer Configuration

AIGO Proposed Configuration

Rule of Thumb

- Carrier should be resonant in the arms and the PRC.
- Carrier resonant in the SRC for resonant sideband extraction (RSE), and anti-resonant for signal recycling.
- SB1 should be nearly anti-resonant in the arms, and resonant in the PRC.
- SB2 also nearly anti-resonant in the arms, and resonant in the PRC.
- One of the SB should be resonant in the SRC and the other nearly anti-resonant.

AIGO Constrains

Limiting values for the cavities length are defined by the vacuum envelop:

$$3600mm < L_{PRC}, L_{SRC}$$

Integer ratios between the cavities are not recommended, in order to avoid harmonics sidebands to resonate in the recycling cavity.

Actual Configuration

• Length PRC = 11727 mm

$$L_{PRC} = l_{pr} + \frac{(l_1 + l_2)}{2}$$

- **9** Mode Cleaner shorter than Recycling Cavities?
- PRC Free Spectral Range: 12.782 MHz
- PRC as a coupled cavity

 half integer of PRC FSR
- "Longest" Mode Cleaner 7818 mm **9** FSR = 19.173 MHz

AIGO Interferometer Sidebands

For transmission of modulation sidebands by the mode-cleaner, L_{MC} and f_m must satisfy: $f_m = n_1 \frac{c}{2L_{max}}$

For sideband coupling into the recycling cavity,
$$L_{PRC}$$
 and f_m must satisfy:

$$f_m = \left(n_2 + \frac{1}{2}\right) \frac{c}{2L_{PRC}} \qquad n_2 = 1$$

$$n_3 = f_m \left(\frac{2L_{Arm}}{c}\right)$$

$$n_3 = 255.82$$

 $n_1 = 1$

 $n_2 =$

AIGO Interferometer Sidebands

To choose the high frequency sideband we look to demodulate at:

 $f_1 + f_2 \le 200 MHz$

Schnupp asymmetry given by:

$$\delta l = \frac{c}{4f_2}$$

$$\delta l = 434 \text{ mm}$$

For a peak frequency of 300Hz (Adv LIGO) the carrier phase shift will be:

 $L_{SRC} = 12569 mm$

Proposed Configuration

• Length PRC = 4450 mm

$$L_{PRC} = l_{pr} + \frac{\left(l_1 + l_2\right)}{2}$$

- PRC Free Spectral Range: 33.685 MHz
- PRC as a coupled cavity

 half integer of PRC FSR
- "Longest" Mode Cleaner 8900 mm **9** FSR = 16.842 MHz

AIGO Interferometer Sidebands

For transmission of modulation sidebands by the mode-cleaner, L_{MC} and f_m must satisfy: $f_m = n_1 \frac{c}{2L_{\text{true}}}$

For sideband coupling into the recycling cavity,
$$L_{PRC}$$
 and f_m must satisfy:

$$f_m = \left(n_2 + \frac{1}{2}\right) \frac{c}{2L_{PRC}} \qquad n_2 = 0$$

$$n_3 = f_m \left(\frac{2L_{Arm}}{c}\right)$$

$$n_3 = 225.55$$

 $n_1 = 1$

 $n_2 =$

AIGO Interferometer Sidebands

To choose the high frequency sideband we look to demodulate at:

 $f_1 + f_2 \le 200 MHz$

Schnupp asymmetry given by:

$$\delta l = \frac{c}{4f_2}$$

$$\delta l = 445 \text{ mm}$$

For a peak frequency of 300Hz (Adv LIGO) the carrier phase shift will be:

 $L_{SRC} = 5313 mm$

AIGO, Adv LIGO and VIRGO

	Adv LIGO	VIRGO	AIGO 2K (sh)	AIGO 2K (lg)
PRM - BS	4	6	1.8	1.8
BS - ITM _{Inline}	4.536	6.4	2.873	10.144
BS - ITM _{Perp}	4.119	5.6	2.427	9.71
L_PRC _{Inline}	8.536	12.4	4.673	11.944
L_PRC _{Perp}	8.119	11.6	4.227	11.510
SRM - BS	4.821	5.562	2.663	2.642

AIGO, Adv LIGO and VIRGO

	Adv LIGO	VIRGO	AIGO 2K (sh)	AIGO 2K (lg)
L_MC	16.656	143.52	8.9	7.818
L_PRC	8.328	11.96	4.45	11.727
L_Arms	4000	3000	2007	2000
L_SRC	9.148	11.562	5.313	12.569
Asymmetry	0.416	0.399	0.445	0.434
SB 1 (MHz)	9	6.27	16.84	19.17
SB 2 (MHz)	180	188	168.42	172.56

High Optical Power

- Newtonian background
- Seismic 'cutoff'
- Suspension
 thermal noise
- Test mass thermal noise
- Unified quantum noise

©LIGO Scientific Collaboration

High Optical Power

- Newtonian background
- Seismic 'cutoff'
- Suspension
 thermal noise
- Test mass thermal noise
- Unified quantum noise

©LIGO Scientific Collaboration

Conclusions

- AIGO 2K Dual Recycling Interferometer
- Test masses Fused Silica or Sapphire?
- Digital control system. EPICS, DSP or both?
- Short or long Recycling Cavities?

Conclusions

More information at:

ACIGA http://www.anu.edu.au/Physics/ACIGA/

Australian National University http://www.anu.edu.au/Physics/ACIGA/ANU/

University of Adelaide http://www.physics.adelaide.edu.au/optics/res/hi_powerc.html

University of Western Australia

http://www.gravity.pd.uwa.edu.au/