Data regression for H1/H2 analyses

Sam Waldman
Nov. 2005 LSC meeting

DCC: LIGO-G050660-00-Z

Stochastic search

 requirements- Overlap reduction function = 1 for H1/H2
- Nonstationary noise $=60 \mathrm{sh}(\mathrm{f})$
- Environmental correlations (cf. N Fotopoulos)

f domain

regression

 from Allen, Hua and Ottewill gr-qc/9909083- Multi-channel regression
- Unknown transfer functions
- "Inner product" of FFT intervals
- Minimize the variance of true signal

Inner product

- Subdivide complex FFT into $\mathrm{F}_{\text {bin }}$ intervals
- Take inner product

- Derive transfer function

$$
\left(\vec{X}^{(b)}, \vec{Y}^{(b)}\right)=\sum_{i=f_{b}}^{f_{b+1}} X_{i} Y_{i}
$$

Transfer function

Frequency [Hz]

Covariance
 $$
\rho_{X Y}^{(b)}=\sqrt{\frac{\left|\left(X^{(b)}, Y^{(b)}\right)\right|^{2}}{\left(X^{(b)}, X^{(b)}\right)\left(Y^{(b)}, Y^{(b)}\right)}}
$$

 coefficient- Quantitative significance measure
- Thresholding
- a.k.a. "Coherence"

- Well defined for gaussian noise
- Threshold on ρ
- Avoid false subtraction

$$
\left\langle\rho_{X Y}^{2}\right\rangle=\frac{1}{F_{\text {bin }}}
$$

Reduced DARM

N Channels

- Extensible to N channels
- Generate $\mathrm{N} \times \mathrm{N}$ matrix of correlations
- Invert matrix to remove crossterms
- Apply pairwise transfer functions to regress data

Rate	\# Channels IFO / PEM
16384	$37 / 4$
2048	$219 / 151$
256	$20 / 33$
16	$4198 / 166$

Algorithm Optimization

F bins	Freq. resolution
N channels	Sensitivity
σ	Stationarity

Channel "strength"

H1 Channel	S4 + 3 hrs	S4 + 398 hrs	S4 + 676 hrs
LSC-MC_AO	$49+/-5$	$64+/-5$	$49+/-5$
LSC-REFL_Q	$56+/-11$	$38+/-6$	$44+/-4$
LSC-MICH_CTRL	$153+/-71$	$160+/-8$	$157+/-6$
LSC-PRC_CTRL	$408+/-103$	$613+/-9$	$450+/-24$
PEM-ISCT4_ACCY	$46+/-8$	$171+/-6$	$197+/-5$
PEM-BSC2_ACCX	$35+/-8$	$72+/-4$	$80+/-9$
PEM-BSC2_ACCY	$35+/-8$	$83+/-4$	$83+/-6$
PEM-BSC3_ACCX	$32+/-5$	$82+/-6$	$85+/-7$
PEM-BSC3_ACCY	$34+/-7$	$94+/-7$	$85+/-7$
PEM-BSC3_ACCZ	$35+/-9$	$95+/-6$	$91+/-3$
PEM-HAM4_ACCY	$34+/-7$	$80+/-3$	$93+/-6$
PEM-PSL1_ACCX	$38+/-5$	$44+/-3$	$44+/-4$
PEM-PSL1_ACCY	$50+/-3$	$53+/-4$	$57+/-6$
PEM-PSL1_ACCZ	$45+/-2$	$58+/-3$	$55+/-3$
PEM-IOT1_ACCY	$31+/-5$	$36+/-2$	$37+/-3$
ASC-QPDX_Y	$31+/-2$	$18+/-2$	$13+/-1$

Multichannel

- Broadband PRC coupling
- seismic@200Hz

Frequency [Hz]

Conclusions

- Insensitive to $\mathrm{H} 1 / \mathrm{H} 2$ common noise
- Possible introduction of coherent noise
- Much algorithm optimization needed
- Hierarchic scheme may be required
- Remove PRC, improve DARM $\leq 10 \%$ from 100 to 300 Hz
- Useful commissioning tool

