Data regression for H1/H2 analyses

Sam Waldman Nov. 2005 LSC meeting

DCC: LIGO-G050660-00-Z

Stochastic search requirements

- Overlap reduction function = 1 for H1/H2
- Nonstationary noise = 60s h(f)
- Environmental correlations (cf. N Fotopoulos)

f domain

regression

from Allen, Hua and Ottewill gr-qc/9909083

- Multi-channel regression
- Unknown transfer functions
- "Inner product" of FFT intervals
- Minimize the variance of true signal

Inner product

- Subdivide complex FFT into F_{bin} intervals
- Take inner product
- Derive transfer function

 $\left(\vec{X}^{(b)}, \vec{Y}^{(b)}\right) = \sum_{i=f_b}^{f_{b+1}} X_i Y_i$

Covariance coefficient

- Quantitative significance measure
- Thresholding
- a.k.a. "Coherence"

 Well defined for gaussian noise

Threshold

Covariance expectation

Gaussian Noise on p 0.1 DARM vs Volt 4 * σ 0.09 Avoid false 0.08 0.07 subtraction 0.07 0.06 0.05 0.05 $\langle \rho_{XY}^2 \rangle$ 0.04 0.03 0.02 0.01 0<u>.</u> 0 0.2 0.4 0.8 0.6**Covariance Value**

N Channels

- Extensible to N channels
- Generate N x N matrix of correlations
- Invert matrix to remove crossterms
- Apply pairwise transfer functions to regress data

Rate	# Channels IFO / PEM	
16384	37 / 4	
2048	219 / 151	
256	20 / 33	
16	4198 / 166	

I.

Algorithm Optimization

Channel "strength"

H1 Channel	S4 + 3 hrs	S4 + 398 hrs	S4 + 676 hrs
LSC-MC_AO	49 +/- 5	64 +/- 5	49 +/- 5
LSC-REFL_Q	56 +/- 11	38 +/- 6	44 +/- 4
LSC-MICH_CTRL	153 +/- 71	160 +/- 8	157 +/- 6
LSC-PRC_CTRL	408 +/- 103	613 +/- 9	450 +/- 24
PEM-ISCT4_ACCY	46 +/- 8	171 +/- 6	197 +/- 5
PEM-BSC2_ACCX	35 +/- 8	72 +/- 4	80 +/- 9
PEM-BSC2_ACCY	35 +/- 8	83 +/- 4	83 +/- 6
PEM-BSC3_ACCX	32 +/- 5	82 +/- 6	85 +/- 7
PEM-BSC3_ACCY	34 +/- 7	94 +/- 7	85 +/- 7
PEM-BSC3_ACCZ	35 +/- 9	95 +/- 6	91 +/- 3
PEM-HAM4_ACCY	34 +/- 7	80 +/- 3	93 +/- 6
PEM-PSL1_ACCX	38 +/- 5	44 +/- 3	44 +/- 4
PEM-PSL1_ACCY	50 +/- 3	53 +/- 4	57 +/- 6
PEM-PSL1_ACCZ	45 +/- 2	58 +/- 3	55 +/- 3
PEM-IOT1_ACCY	31 +/- 5	36 +/- 2	37 +/- 3
ASC-QPDX_Y	31 +/- 2	18 +/- 2	13 +/- 1

Conclusions

- Insensitive to H1/H2 common noise
- Possible introduction of coherent noise
- Much algorithm optimization needed
- Hierarchic scheme may be required
- Remove PRC, improve DARM $\leq 10\%$ from 100 to 300 Hz
- Useful commissioning tool