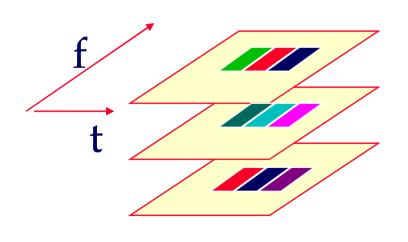


First results from the likelihood pipeline

S.Klimenko (UF), I.Yakushin (LLO), A.Mercer (UF), G.Mitselmakher (UF)

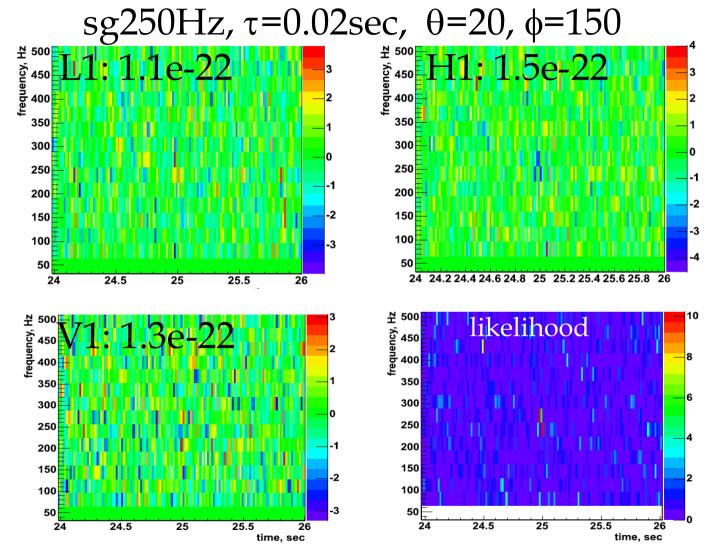
- network WaveBurst pipeline
- LIGO-Virgo project 1b results
- Coherent energy, x-correlation
- S4 results
- Summary&Plans

Why one more method for burst detection?


- The network WaveBurst pipeline is based on likelihood method (PRD 72, 122002, 2005)
 - > a coherent method for burst detection
 - >allows reconstruction of GW waveforms and source coordinates
 - works for arbitrary alignment of detectors

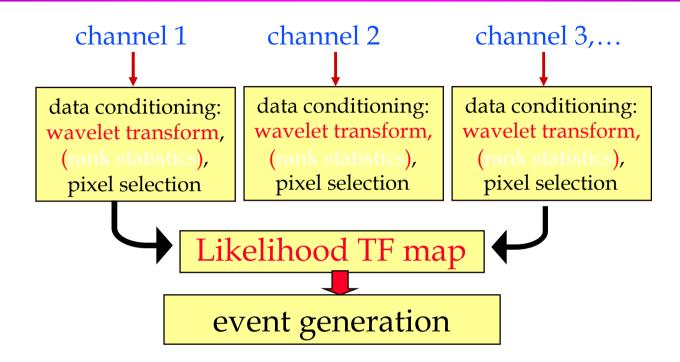
Search algorithm

- works in time-frequency domain
- likelihood formalism independent for each TF sample
 - greatly simplifies calculation of network response
- likelihood time-frequency maps
- time shifts → use 2D TF time delay filter



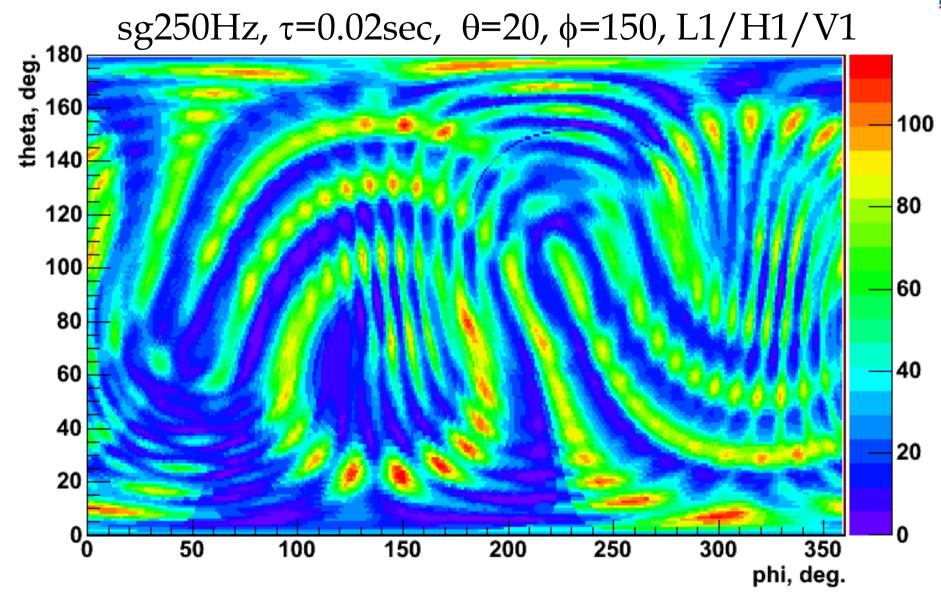
pick any pixel with fixed (f,t) and calculate pixel amplitudes a2(t,f, δ) and a3(t,f, δ) time-shifting planes 2 & 3 by delay δ The amplitudes a1, a2(t,f, δ) and a3(t,f, δ) are used to calculate pixel likelihood L(t,f, δ)

Time-frequency maps



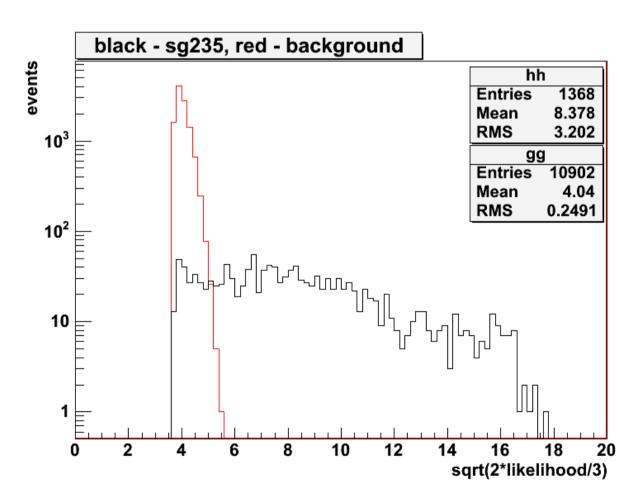
apply threshold on likelihood and reconstruct clusters

Coherent WaveBurst



- Similar approach as for incoherent WaveBurst
- Uses most of existing WaveBurst functionality

Likelihood sky maps



LIGO-Virgo simulated noise

- Likelihood of triggers on the output of nWB
 - different types of injections (SG,GAUSS,SN)
 - background -- 101 time shifts (T=8726400sec)

2L is the total detected energy

Periodic table of burst algorithms

3pl – triple coincidence

false alarm rate 1-3 µHz

or2 - OR of detector pairs

Fraction (%) of detected events

	A1B2G1	A2B4G1	gauss1	gauss4	sg235	sg820
	or2 / 3pl	or2 / 3pl	or2 /3pl	or2 / 3pl	or2 / 3pl	or2 / 3pl
PF	33 / 9	39 / 10	60 / 17	19 / 7	19 / 3	34 / 13
KW	26 / 6	36 / 9	52 / 13	14 / 4	38 / 6	11 / 2
PC	56 / 14	67 / 19	76 / 30	55 / 23		
EGC	52 / 16	43 / 12	66 / 23	32 / 13	60 / 19	32 / 13
MF	28 / 8	43 / 13	55 / 17	17 / 8	20 / 3	1 / 0
ALF	33 / 9	47 / 14	60 / 20	28 / 12	25 / 3	6 / 2
QT	45 / 20	59 / 23	76 / 35	46 / 18	77 / 39	62 / 32
WBN	41	63		62	82	73

maximum likelihood statistic

• Likelihood for Gaussian noise with variance σ^2_k and GW waveform u: $x_k[i]$ – detector output, F_k – antenna patterns

$$L = \sum_{i} \sum_{k} \frac{1}{2\sigma_{k}^{2}} \left[x_{k}^{2}[i] - (x_{k}[i] - \xi_{k}[i])^{2} \right]$$

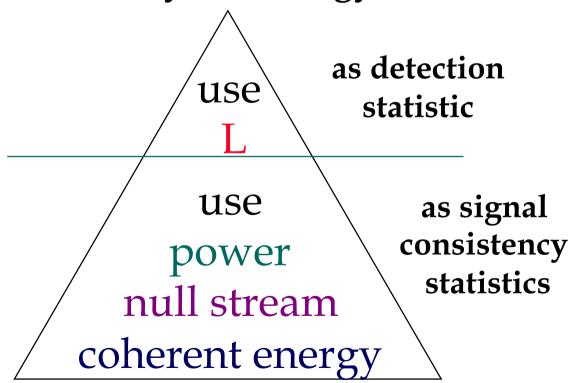
detector response -
$$\xi_k = h_+ F_{+k} + h_x F_{xk}$$

$$2L = E - N$$
 detected (signal) total noise (null)

energy

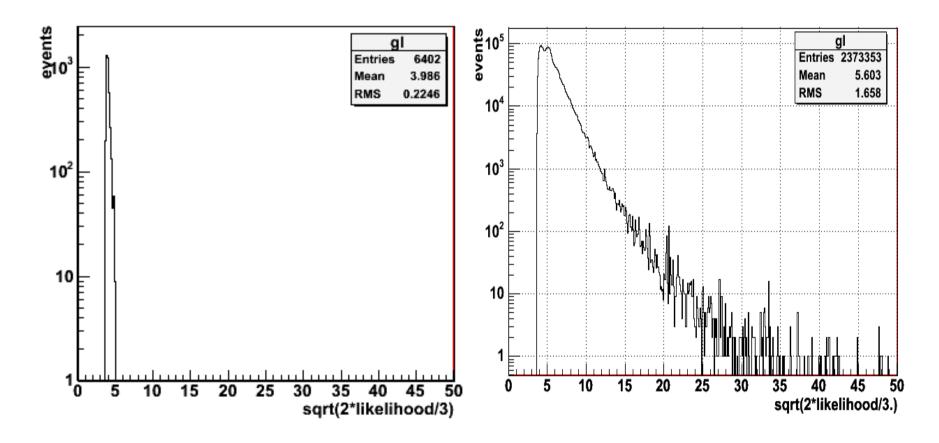
energy

• Events reconstructed by the pipeline are coincident in time by construction → what is definition of a coincidence?


energy

real world analysis

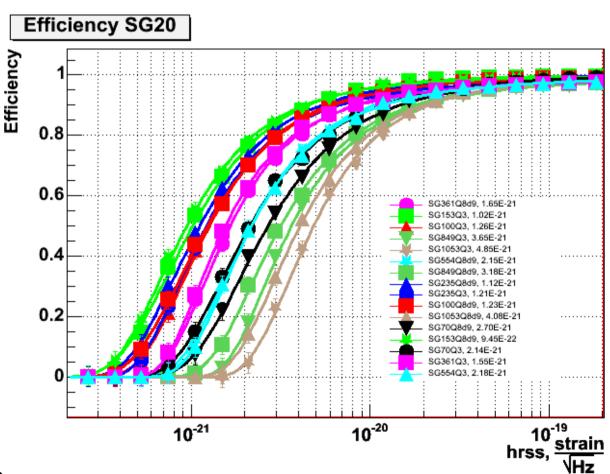
- In ideal world where detector noise is always Gaussian: likelihood statistic is sufficient.
- In the real world where data is always contaminated with glitches: the signal consistency statistics are required
- Real world analysis strategy



Likelihood distribution

Ligo-Virgo noise

S4 data



Detection performance as ETG

sgQ9	70	100	153	235	361	553	849	1053
WB	4.60	1.32	1.13	1.29	2.04	2.49	3.71	5.00
nWB	2.70	1.23	0.94	1.12	1.65	2.15	3.18	4.01

tuned to
FA rate
20µHz
by setting
threshold
on power in
each detector

Coherent energy

Likelihood is a quadratic form:

$$2L = \sum_{i,j} \langle x_i x_j \rangle C_{ij} = E_{i=j} + E_{i\neq j}$$
incoherent coherent

- x_i whitened data streams
- C_{ij} depend on antenna patterns and detector sensitivity. For constraint likelihood:

$$C_{ii} = \frac{1}{2g} \left(\frac{F_{+i}^2}{\sigma_i^2} + \frac{F_{\times i}^2}{\sigma_i^2} \right), \quad C_{i \neq j} = \frac{1}{2g} \left(\frac{F_{+i}F_{+j}}{\sigma_i\sigma_j} - \frac{F_{\times i}F_{\times j}}{\sigma_i\sigma_j} \right)$$

g – network sensitivity

X-correlation for misaligned detectors

• S-statistic

$$r = \frac{E_{ij}}{\sqrt{E_{ii}E_{jj}}} \longrightarrow \frac{\langle x_i x_j \rangle}{\sqrt{\langle x_i^2 \rangle \langle x_j^2 \rangle}}$$

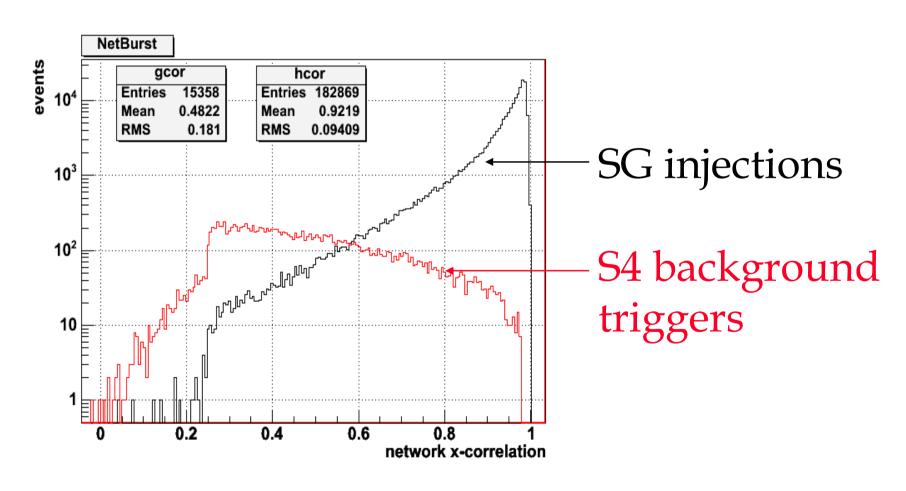
arbitrary detectors aligned detectors

Cauchy-statistic

tatistic
$$c = \frac{E_{ij}}{E - E_{ii} - E_{jj}} \rightarrow \frac{2\langle x_i x_j \rangle}{\langle x_i^2 \rangle + \langle x_j^2 \rangle}$$

> network global x-correlation coefficient

$$C_{net} = rac{\sum_{i \neq j} E_{ij}}{E - \sum_{i \neq j} E_{ii}} = rac{E_{coherent}}{N_{ull} + E_{coherent}}$$


Similar to r-statistic the KS test can be applied

Network x-correlation

• powerful signal consistency test different from the NULL stream

End-to-End pipeline

- In addition to excess power cuts apply selection cuts based on the likelihood x-correlation terms
 - works for arbitrary detector alignment

sgQ9	70	100	153	235	361	553	849	1053
WB+R	4.7	1.4	1.2	1.3	2.1	2.6	3.9	5.4
WBN	3.5	1.5	1.2	1.5	2.2	2.9	4.6	6.1

- False alarm (100 time lags) 0.2 mkHz
- Results are very preliminary
 - > no DQ flags were applied
 - post-processing election cuts are not tuned

Pipeline performance

- Search over the entire sky with good angular resolution can be computationally very intensive
- nWB pipeline performance for all sky search with 1° resolution (65000 sky locations) and 101 time lags
 - > cit 2.2GHz 64 bit obteron 1. 0 sec/sec
 - ➤ Llo 3.4GHz 32 bit Xeon 1.6 sec/sec
- nWB performance is comparable to the incoherent WaveBurst pipeline
 - > typical run time on LLO cluster for S4 data is 1 day

- network WaveBurst pipeline (nWB) based on likelihood analysis is operational.
 - ➤ LIGO-Virgo project 1b data: nWB looks good in "ideal world"
 - > S4 data: results consistent with the standard WB+R pipeline
 - > Excellent computational performance
- x-correlation coefficients can be defined for arbitrary networks which offers a waveform consistency test complementary to Null stream

Plans

- Finalize tuning of selection cuts & S4 data analysis
- study coordinate and waveform reconstruction
- try algorithm on LIGO-GEO and LIGO-Virgo data
- run online coherent search on S5 data
- Produce likelihood statistic for triggered population search (with S.Mohanty)
- perform BH-BH merger search