Exploring the Gravitational Wave Sky with LIGO

Laura Cadonati (MIT) For the LIGO Scientific Collaboration COSMO 2006 Lake Tahoe, September 25 2006

LIGO-G060501-00-Z

Image credits: K. Thorne (Caltech), T. Camahan (NASA/GSFC)

Why gravitational waves

GW: a new "sense" to probe the Universe

Initial goal: measure difference in length to one part in 10²¹, or 10⁻¹⁸ m

Livingston Observatory 4 km interferometer

The LIGO Scientific Collaboration

LIGO Time Line

Initial LIGO Sensitivity Limits

LIGO Beam Tube

LIGO Vacuum Equipment

Mirror Suspensions

10 kg Fused Silica, 25 cm diameter and 10 cm thick

magnet

Goal: at least one year data in coincident operation at design sensitivity

Enhanced LIGO for S6

Motivation:

Factor of ~2.5 in noise improvement above 100 Hz Factor ~5-10 in inspiral binary neutron star event rate

Debug new Advanced LIGO technology in actual low noise interferometers Reduce the Advanced LIGO commissioning time

Advanced LIGO

Goal: quantum-noise-limited interferometer

should be comparable to 1 year of initial LIGO

- » Approved by NSF to be proposed for Congress approval in FY2008
- » Begin installation: 2010
- » Begin observing: 2013

Sources targeted by LIGO

Compact binaries

- » Black holes & neutron stars
- » Inspiral and merger
- » Probe internal structure, populations, and spacetime geometry

Bursts

- » Neutron star birth, tumbling and/or convection
- » Cosmic strings, black hole mergers,
- » Correlations with electro-magnetic observations
- » Surprises!

Spinning neutron stars

- » Isolated neutron stars with mountains or wobbles
- » Low-mass x-ray binaries
- » Probe internal structure and populations

Stochastic background

- » Big bang & early universe
- » Background of gravitational wave bursts

16

Coalescing Binaries

LIGO is sensitive to gravitational waves from neutron star (BNS) and black hole (BBH) binaries

10		NS/BH	Binary Black Holes (BBH 3-30M _☉) Predicted rate: highly uncertain estimated mean rate ~1/y In S2: R<38/year/MWEG PRD 73 (2006) 062001
nent mass m ₂ [M _o]		Binary Neutron Stars (BNS $1-3M_{\odot}$) Initial LIGO rate ~ 1/30y – 1/3y In S2: R< 47/year/MWEG	NS/BH
0.1	Primordial Black Hole Binaries / MACHOs Galactic rate <8/kyr In S2: R<63/year from galactic halo PRD 72 (2005) 082002	"High mass ratio" Coming soon	
().1 [·]	1 Component mass m ₁ [M _{\odot}]	3 10

10		Equal mass binaries. average over 1 ⁴³ months of 55	Binary Black Holes Early S5: Mass-dependent horizon Peak for H1: 130Mpc ~ 25M _☉
د Component mass m₂ [M _☉] 1.0		Binary Neutron Stars Early S5 BNS horizon: Hanford-4km: 25 Mpc Livingston-4km: 21 Mpc Hanford-2km: 10Mpc Was 1.5 Mpc in S2	NS/BH
	Primordial Black Hole Binaries / MACHOs S4 reach: 3 Milky Way-like halos S5 in progress	BNS horizon: distance of optimally oriented and located 1.4-1.4 $\rm M_{\odot}$ binary at SNR=8	
C).1	Component mass $m_1 [M_{\odot}]$	3 10

Gravitational-Wave Bursts

Any short duration (< 1s) "pop" in the data

Plausible sources: core-collapse supernovae Accreting / merging black holes gamma-ray burst engines Instabilities in nascent neutron stars Kinks and cusps in cosmic strings SURPRISES!

Probe interesting new physics Dynamical gravitational fields, black hole horizons, behavior of matter at supra-nuclear densities

Uncertain waveform complicate detection \Rightarrow minimal assumptions, open to unexpected

"Eyes-wide-open", all-sky, all times search excess power indicative of a transient signal; coincidence among detectors. Targeted matched filtering searches e.g. to cosmic string cusps or black hole ringdowns (in progress).

Triggered search Exploit known direction and time of astronomical events (e.g., GRB), cross correlate pairs of detectors. GRB030329: PRD 72, 042002, 2005

All-Sky Burst Search

No GW bursts detected through S4: set limit on rate vs signal strength

S5 sensitivity: minimum detectable in-band GW energy $E_{GW} > 1 M_{\odot}$ @ 75Mpc $E_{GW} > 0.05 M_{\odot}$ @ 15Mpc (Virgo cluster)

Detectability of string cusps

Targeted matched filtering search (in progress) for GW bursts from cosmic strings and superstrings – see Damour, Vilenkin (200, 2001, 2005)

$$h(f) = A|f|^{-4/3}\Theta(f_h - f)\,\Theta(f - f_l)$$

L=size of feature producing the cusp θ=angle between line of sight and cusp direction f_l=cutoff – instrumental limitation (seismic wall)

Initial LIGO estimated: $A_{50\%} = 10^{-20} \ {\rm s}^{-1/3}$

Advanced LIGO estimated:

$$A_{50\%} = 10^{-21} \text{ s}^{-1/3}$$

Continuous Waves

Accreting neutron stars

Wobbling neutron stars

"bumpy" neutron stars

- Known pulsar searches
 - » Catalog of known pulsars
 - » Narrow-band folding data using pulsar ephemeris
- All sky incoherent searches
 - » Sum many short spectra
- Wide area search
 - » Doppler correction followed by Fourier transform
 - » Computationally very costly
 - » Hierarchical search under development

Results from S2:

- No GW signal.
- First direct upper limit for 26 of 28 sources studied (95%CL)
- Equatorial ellipticity constraints as low as: ε < 10⁻⁵

$$\epsilon = (I_{xx} - I_{yy})/I_{zz}$$

See also the Einstein@home project: http://www.physics2005.org

Known pulsars

ephemeris is known from EM observations

Stochastic GW Backgrounds

Cosmological background: Big Bang

Astrophysical background: Unresolved individual sources

e.g.: black hole mergers, binary neutron star inspirals, supernovae

GW spectrum due to ringdowns of 40-80 M_{\odot} black holes out to z=5 (Regimbau & Fotopoulos)

$$\Omega_{GW}(f) = \frac{1}{\rho_c} \frac{d\rho_{GW}(f)}{d\ln f}$$

24

Detection strategy:

cross-correlate output of two GW detectors

Cross-correlate two data streams x₁ and x₂
For isotropic search optimal statistic is

"Overlap Reduction Function" (determined by network geometry)

Detector noise spectra

- Digging deep into instrumental noise looking for small correlations.
- Need to be mindful of possible non-GW correlations
 - » common environment (two Hanford detectors)
 - » common equipment (could affect any detector pair!)
- Example:
 - » Correlations at harmonics of 1 Hz.
 - » Due to GPS timing system.
 - » Lose ~3% of the total bandwidth (1/32 Hz resolution).

Signal Recovery

S4 Analysis Details

• Cross-correlate Hanford-Livingston

- » Hanford 4km Livingston
- » Hanford 2km Livingston
- » Weighted average of two cross-correlations (new in S4).
- » Do not cross-correlate the Hanford detectors.
- Data quality:
 - » Drop segments when noise changes quickly (non-stationary).
 - » Drop frequency bins showing instrumental correlations (harmonics of 1 Hz, bins with pulsar injections).
- Bayesian UL: Ω_{90%} = 6.5 × 10⁻⁵
 - » Use S3 posterior distribution for S4 prior.
 - » Marginalized over calibration uncertainty with Gaussian prior (5% for L1, 8% for H1 and H2).

ALSO COMING SOON: Directional search ("GW Radiometer") Use cross-correlation kernel optimized for un-polarized point source Ballmer, gr-qc/0510096

Landscape

Binary neutron stars: From ~20 Mpc to ~350 Mpc From 1/30y(<1/3y) to 1/2d(<5/d)

Binary black holes: From $10M_{\odot}$ to $50M_{\odot}$ From ~100Mpc to z=2

Known pulsars: From ε = 3x10⁻⁶ to 2x10⁻⁸

Stochastic background: From $\Omega_{GW} \sim 3x10^{-6}$ to $\sim 3x10^{-9}$

Conclusions

In the process of acquiring one year of coincident data at design sensitivity. "Online" analysis & follow-up provide rapid feedback to experimentalists. Results from fourth and fifth LIGO science runs are appearing.

As we search, we're designing advanced instruments to install in 2010-2013; recent technology can improve by a factor of 10 in *h* or 1000 in event rate

Boosts in laser power and readout technology planned for 2008 can net an early factor of 2 (x8 in BNS event rate!); also help reduce risk and startup time for Advanced LIGO