

Data Quality Vetoes in LIGO S5 Searches for Gravitational Wave Transients

Laura Cadonati (MIT) for the LIGO Scientific Collaboration

LIGO-G060628-00-Z

Data Quality Vetoes

- Goal: eliminate non-Gaussian transients in burst and inspiral searches
- Data quality flags are created for known artifacts, for "bad" and "so-and-so" data. Some flags are critical, others are advisory. Not all are appropriate as vetoes: choose!

Burst and Inspiral analysis cuts (coincidence, incoherent and semi-coherent consistency cuts) are already quite good at rejecting accidental coincidences due to noise transients.

Vetoes take care of outliers that remain after analysis cuts.

• This talk presents:

- Classification scheme for data quality vetoes
- Details on some of the most interesting flags
- Particular focus on the H1-H2 features

The Glitch Group

A meeting point for data analysis and instrument Goal: data quality, feedback to instrument, veto for Burst and Inspiral

DURING S5:

- On-line, off-site
 - Weekly assessment of transients on DARM_ERR and auxiliary channels with potential repercussion on astrophysical searches (burst and inspiral)
 - Feedback to detector team

• Off-line

- Contributing to data quality assessment
- Definition of vetoes for the burst and inspiral searches

Cited examples are choices of Burst group, Inspiral are very similar, with some subleties in the Cat 1-2 distinction

Category 1	Inspiral: data not worth analyzing Burst: Minimal data quality vetoes, for the selection of data segments to be analyzed (e.g. calibration problems, test injections, photodiode saturations)
Category 2	"Unconditional" post-processing vetoes: data is unreliable and there is an established one-on-one correlation with loud transients. <i>(e.g. saturations in the alignment control system, glitches in the power main)</i>
Category 3	"Conditional" post-processing vetoes, for upper limit: statistical correlation to loud transients. We still look for detection candidates at those times, exerting caution when establishing detection confidence. (e.g. train/seismic flags, 1 minute pre-lockloss, "dips" of light stored in the arm cavities)
Category 4	Advisory flags: no clear evidence of correlation to loud transients, but if we find a detection candidate at these time, we need to exert caution (e.g. high wind and certain data validation issues)

In addition: event-by-event veto based on correlated glitching on auxiliary channels, presented in the next talk by Erik Katsavounidis

G060628-00-Z

- Data Quality veto safety tested on hardware injections
 - See talk by Myungkee Sung talk
- In all cases, these vetoes are "safe" (coincidence with hardware injections consistent with random).
- One exception: LSC overflow can be triggered by very loud injections
 - Make sure in other ways that we are not vetoing a loud signal, looking at data from other interferometers.

LSC Overflows

some part of the length sensing and control system saturated, making it nonlinear and/or feeding back a glitch into the interferometer

Category 1 veto for burst Category 2 veto for inspiral

Veto buffer for inspiral: [-25,+1]

L1:

0.4% deadtime 88% vetoes an SNR>8 48% vetoes an SNR>50

Vetoes 54% of SNR>50 Vetoes 90% of SNR>500

G060628-00-Z

Category 1 veto for burst Category 2 veto for inspiral

Analysis cuts are designed to address coincident transients

G060628-00-Z

Effect of Category 2 vetoes on the early S5 burst search

EXAMPLE (continued): Early S5 BURST analysis

Colored area: vetoed by Cat 2: ASI_CORR_OVERFLOW (1.8% D.T.) OVERFLOWS IN ASC OVERFLOWS IN SUS_RM CALIB_BAD_COEFF OSEM_GLITCH (H2 only) MMT3_OPTLEVER (H2 only) POWMAG

Dead Time = 2.2% Veto efficiency: $\Gamma > 4 : 7.8\%$ $\Gamma > 5 : 27.6\%$

Glitches in the Power Line

G060628-00-Z

GWDAW-11, Potsdam 12/18/2006

11

Coincidence, analysis cuts already effective

Not all Cat 2 flags are as effective on coincident events in the analysis, but if we know the physical coupling causing the single IFO transient, and the dead-time is small, we use the veto. Examples from the first 5 months of S5:

Triple-coincidences: burst, after H1-H2 cuts (accidentals, from 100 LLO-LHO time slides)

G060628-00-Z

G060628-00-Z

GWDAW-11, Potsdam 12/18/2006

Normalized tile energy

G060628-00-Z

16

14

12

10

1/16 sec data repeats, inconsistency between the two frame-builders CHECKSUM_MISMATCH flag

> WIND_OVER_30MPH Correlated with range loss and glitches

H1 range

G060628-00-Z

All Together

Inspiral BNS Single-IFO triggers as the cuts are applied

40 days of L1:

Veto Cat.	Deadtime fraction	veto ef SNR>8	ficiency SNR>50
2	7.2%	27%	80%
2+3	8.5%	32%	80%
2+3+4	9.1%	34%	82%

Residual glitches disappear with coincidence, χ^2 , r² cut ... AND (for LHO) with the H1-H2 distance cut

G060628-00-Z

• 1.4/1.4 solar mass inspiral hardware injection at 5 Mpc

Conclusion

- In S5, collaboration between search groups and detector characterization, through the glitch group: quasi-online data quality assessment
- Some features founds after looking at burst and inspiral triggers
 ⇒ More on this in talk by Erik Katsavounidis
- Burst and inspiral analysis have refined their cuts, but some instances of single-interferometer loud transients still sneak in
- Data quality cuts address residual coincident outliers (e.g. glitches in the power line or accidental coincidence of seismic up-conversion in different sites)
- The residual accidental coincidence histogram for burst and inspiral is quite clean