Testing GR with Inspirals

B.S. Sathyaprakash, Cardiff University, UK based on work with Arun, Iyer, Qusailah, Jones, Turner, Broeck, Sengupta LIGO-G060681-00-Z

Plan

- Gravitational-wave
 spectrum
 - What might be observed from ground and space
- Gravitational-wave observables
 - amplitude, luminosity, frequency, chirp-rate

- Fundamental properties
 - speed, polarization, ...
- Strong field tests of general relativity
 - merger dynamics, QNM
- Predictions of PN gravity
 - presence of log-terms
- Cosmology

Gravitational Wave Spectrum

Compact Binary Inspirals

- Late-time dynamics of compact binaries is highly relativistic, dictated by non-linear general relativistic effects
- Post-Newtonian theory, which is used to model the evolution, is now known to O(v⁷)
- The shape and strength of the emitted radiation depend on many parameters of binary system: masses, spins, distance, orientation, sky location, ...
- Three archetypal systems
 - Double Neutron Stars (NS-NS)
 - Neutron Star-Black Hole (NS-BH)
 - Double Black Holes (BH-BH)

Testing GR with Inspirals

Gravitational Wave Observables

- Luminosity $L = (Asymm.) V^{10}$
 - Luminosity is a strong function of velocity: A black hole binary source brightens up a million times during merger
- Amplitude

h = (Asymm.) (*M*/*R*) (*M*/*r*)

- The amplitude gives strain caused in space as the wave propagates
- For binaries the amplitude depends only on chirpmass^{5/3}/distance

• Frequency $f = \sqrt{\rho}$

- Dynamical frequency in the system: twice the orb. freq.
- Binary chirp rate
 - Many sources chirp during observation: chirp rate depends only chirp mass
 - Chirping sources are standard candles
- Polarisation
 - In Einstein's theory two polarisations - plus and cross

Fundamental Measurements

Quadrupole formula

- Binary pulsars have already confirmed the quadrupole formula in weak-field regime
- GW observations will test the validity of the quadrupole formula in strong gravitational fields
- Gravitational potential Φ ~ 10⁻⁶ (v ~ 10⁻³) n radio binary pulsars while Φ ~ 0.1 (v ~ 0.3) in coalescing binaries
- PN effects at order v⁷ are 10¹⁴ times more important in inpsiral observations than in radio pulsars

Speed of Gravitational Waves

- In general relativity gravitational waves travel on the light-cone
- How do we measure the speed of GW:
 - Coincident observation of gravitational waves and electromagnetic radiation from the same source
 - for a source at a distance D can test the speed of GW relative to EM to a relative accuracy of ~1/D

Constrain the mass of the graviton

- If graviton is massive then it will lead to dispersion of the waves (Cliff Will)
 - Different waves travel at different speeds
 - The phasing of the waves changes
 - The matched filter will have an additional parameter (mass of the graviton)
- Can constrain $\lambda g \sim 1.3 \times 10^{13}$ in EGO and 7 x 10¹⁶ km in LISA (Arun et al)

Polarisation of Gravitational Waves

Cross polarization

Gravitational-Wave Polarization

Cliff Will

Response of a GW Detector

- $R(t,\theta,\phi,\psi) = F_+(\theta,\phi,\psi) h_+(t) + F_{\chi}(\theta,\phi,\psi) h_{\chi}(t)$
 - $h_+(t, i)$, $h_X(t, i)$ The two different polarisations of the gravitational wave in GR
 - $F_+(\theta,\phi,\psi)$, $F_x(\theta,\phi,\psi)$ antenna response to the two different polarisations
 - θ , ϕ Direction to the source
 - Polarization angle ψ

Beam Pattern Function

$$F_i(\theta_i, \phi_i) = C_i \left[\left(\frac{1 + \cos^2(\theta_i)}{2} \cos(2\phi_i) \right)^2 + \cos^2(\theta_i) \sin^2(2\phi_i) \right]^{1/2},$$

- Beam pattern of a detector is the sensitivity of an antenna to un-polarized radiation as a function of the direction of the incoming wave
- (θ_i, ϕ_i) source coordinates wrt with *i*-th detector, and the factor C_i is a constant used to mimic the difference in the strain sensitivity of different antennas.
- In order to compare different detectors it is necessary to choose a single coordinate system (Θ, Φ) with respect to which we shall consider the various detector responses

LIGO Livingstone

ACIGA

GEO 600

LIGO Hanford

Extracting the Polarisation in GR

- Assuming that there are only two polarisations
 - We can extract the two polarizations using three or more detectors (three responses and two independent time delays to measure the fine unknowns)

Strong field tests of relativity

Fundamental questions on strong gravity and the nature of space-time

- From inspiral and ringdown signals
 - measure *M* and *J* before and after merger: test Hawking area theorem
 - Measure J/M². Is it less than 1?
 - Consistent with a central BH or Naked singularity or Soliton/Boson stars?

Accurate measurements from inspirals

Testing the Merger Dynamics

- From inspiral, merger and quasi-normal modes
 - Test analytical models of merger and numerical relativity simulations
- Effective one-body (Buonanno and Damour)
 - 0.7% of total mass in GW
- Numerical relativity (Baker et al, AEI, Jena, PSU, UTB)
 - 1-3% of total mass in GW

Analytical Vs Numerical Relativity

November 17, 2006

Testing GR with Inspirals

Adv LIGO Sensitivity to Inspirals

Strong field tests of gravity Consistency of Parameters

November

Testing Post-Newtonian Gravity

GR two-body problem is ill-posed

• GW detectors are a tool to explore the two-body problem and tests the various predictions of general relativity

Merger of supermassive black holes - no templates needed!

Phasing Formula for GW akin to **Timing Formula for Binary PSRs**

Newtonian

 $\pi \ln$

 $-\frac{1}{\eta\tau^5}$ {1 $\Phi(t)$ **Blanchet** Damour Tails of GW Faye Farase lyer Jaranowski Schaeffer Will Wiseman

Gravitational wave tails

Blanchet and Schaefer 95, Blanchet and Sathyaprakash 96

November 17, 2006

Testing GR with Inspirals

Phasing Formula for GW akin to Timing Formula for Binary PSRs $\Phi(t) = -\frac{1}{-5} \{1 \text{ Newtonian}\}$

Blanchet Damour Faye Farase

lyer

Jaranowski

Schaeffer Will

Wiseman

 $-rac{1}{\eta au^5} \Big\{ 1$ Newtonian $\left(\frac{3715}{8064} + \frac{55}{96}\eta\right)$ Tails of GW 284875 9275495 258048 15 38645 η π In 53 831032450749357 10756 429 225554565 1179625 1071835008 1769472 56 188516689 140495 2659516096

November 7

Signal in the Fourier Domain $\tilde{h}(f) \equiv \int_{-\infty}^{\infty} h(t) \exp(2\pi i f t) dt$

Here t_C and Φ_C are the fiducial time- and phase-offsets of of the signal.

 $= \frac{3}{128 \eta} (\pi M)^{(k-5)/3} \alpha_k$

November 17, 2006

icound on whith mophaio

Testing other PN effects in LISA

- In this test we reexpand the logterms and absorb them into various.
 post-Newtonian for an and absorb
- The test can quite ^o reliably test most PN parameters except \u03c644

November 17, 2006

Testing GR with Inspirals

Testing the presence of log $terms_{m1-m2 \ Plane.} \rho = 10^{6}$

- In this test we keep the log-terms as they appear but introduce new
 parameters corresponding to the log-terms
- Greater number of parameters means that we have a weaker test

Testing GR with Inspirals

Consistency of PN Coefficients including log-terms

November 17,

38

Cosmology

Cosmology and Astronomy from Stellar Mass Binary Coalescences

- Cosmology
 - Measure luminosity distance to within 10% and, with the aid of EM observations of host galaxies, determine cosmological parameters; binary coalescences are standard candles, build a new distance ladder, measure d_L(z); infer about dark matter/energy

• Search for EM counterpart, e.g. γ-burst. If found:

- Learn the nature of the trigger for that γ -burst, deduce relative speed of light and GW's: ~ 1 / 3x10⁹ yrs ~ 10⁻¹⁷
- measure Neutron Star radius to 15% and deduce equation of state
- Deduce star formation rate from coalescence rates

November 17, 2006

Testing GR with Inspirals

In conclusion

Ground-Based Detectors: Nearby to High-z Universe

20 Mpc: Current interferometers Virgo Supercluster 300 Mpc Adv. Interferometers Coma cluster

3 Gpc 3rd gen. interferometers Cosmological Dist

November 17, 2006

LISA: Fundamental Physics, Astrophysics and Cosmology

