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Plan

e Gravitational-wave e Fundamental properties
spectrum - speed, polarization, ...
- What might be observed e Strong field tests of

from ground and space general relativity

e Gravitational-wave - merger dynamics, QNM
observables

- amplitude, luminosity,
frequency, chirp-rate

e Predictions of PN gravity
- presence of log-terms

e Cosmology
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Gravitational Wave Spectrum
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Compact Binary Inspirals

e Late-time dynamics of compact
binaries is highly relativistic,
dictated by non-linear general
relativistic effects

e Post-Newtonian theory, which is
used to model the evolution, is
now known to O(v’)

e The shape and strength of the
emitted radiation depend on
many parameters of binary
system: masses, spins, distance,
orientation, sky location, ...

e Three archetypal systems

- Double Neutron Stars (NS-NS)
- Neutron Star-Black Hole (NS-BH)
- Double Black Holes (BH-BH)

Amplitude

Time
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Gravitational Wave Observables

e Luminosity L = (Asymm.) vi® e Frequency f = Vp

- Luminosity is a strong function - Dynamical frequency in the
of velocity: A black hole binary system: twice the orb. freq.
source brightens up a million : :
times during merger = Binary chirp rate

- Many sources chirp during

= Amplitude observation: chirp rate
h = (Asymm.) (M/R) (M/r) depends only chirp mass
- The amplitude gives strain - Chirping sources are
caused in space as the wave standard candles
propagates

e Polarisation

- In Einstein’s theory two
polarisations - plus and cross

- For binaries the amplitude
depends only on
chirpmass®/3/distance
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Fundamental
Vieasurements



Quadrupole formula
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e Binary pulsars have already
confirmed the quadrupole
formula in weak-field
regime

e GW observations will test
the validity of the
guadrupole formula in
strong gravitational fields

e Gravitational potential ® ~
10® (v ~ 103) n radio binary
pulsars while ® ~ 0.1 (v ~
0.3) in coalescing binaries

e PN effects at order v’ are
1014 times more important
In inpsiral observations than
In radio pulsars
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Speed of Gravitational Waves

e |In general relativity gravitational waves
travel on the light-cone
e How do we measure the speed of GW:

- Coincident observation of gravitational waves
and electromagnetic radiation from the same
source

- for a source at a distance D can test the speed of
GW relative to EM to a relative accuracy of ~1/D
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Constrain the mass of the graviton

e |f graviton is massive then it will lead
to dispersion of the waves (Cliff Will)

- Different waves travel at different speeds
- The phasing of the waves changes

- The matched filter will have an additional
parameter (mass of the graviton)

e Can constrain Ag ~ 1.3 x 1033 in EGO
and 7 x 101° km in LISA (Arun et al)

November 17. 2006 Testing GR with Inspirals



Polarisation of Gravitational Waves

Plus polarization Cross polarization



Cliff Will

Gravitational-Wave Polarization
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Response of a GW Detector

* R(t,0.9.v) = F.(6,0,¥) h,()+ F,(6.4.y) hy(D)

- h,(t,7), hy(t,?) - The two different polarisations
of the gravitational wave in GR

- F.(6,0,v), F.(6,¢,y) antenna response to the two
different polarisations

- 6, ¢ Direction to the source

- Polarization angle
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Beam Pattern Function

5 1/2
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e Beam pattern of a detector is the sensitivity of an antenna to
un-polarized radiation as a function of the direction of the

Incoming wave

e (8 , ¢ ) source coordinates wrt with i-th detector, and the
factor C; is a constant used to mimic the difference in the
strain sensitivity of different antennas.

e |n order to compare different detectors it is necessary to
choose a single coordinate system (©, ®) with respect to which
we shall consider the various detector responses
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Extracting the Polarisation in GR

e Assuming that there are only two
polarisations
- We can extract the two polarizations using
three or more detectors (three responses and

two independent time delays to measure the
fine unknowns)
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Strong field
tests of

relativity



Fundamental questions on strong
gravity and the nature of space-time

e From inspiral and ringdown signals

- measure M and J before and after merger: test
Hawking area theorem

- Measure J/M2. Is it less than 1?

- Consistent with a central BH or Naked singularity or
Soliton/Boson stars?
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Accurate measurements from inspirals

Sources at fixed SNB=10 Sources al fixed dislance of 300 Mpc
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Measurement Errors (Cov. Matrix)

Fractional Errors in Mass and Spin for Advanced Ligo
Black Hole at 10Mpc
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Measurement Errors (Cov.Matrix)

Fractional Errors in Spin and Mass for LISA
Black Hole at 3 G pC
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Testing the Merger Dynamics

e From inspiral, merger and

guasi-normal modes

- Test analytical models of

merger and numerical
relativity simulations

e Effective one-body
(Buonanno and Damour)

- 0.7% of total mass in GW

e Numerical relativity (Baker

et al, AEl, Jena, PSU, UTB)

- 1-3% of total mass in GW t(from 100 Hz)
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Analytical Vs Numerical Relativity

0.02 -600 -500 -400

re,

-0.02 —

I T I T ]
i Inspiral, merger and QNM in (10,1.4) systam
. i 0.29 : : . , ‘
R1 _
—- R2
R3 019 | B
: — R4 A
| 1 | - h
-300 -200 -100 0.09 J

-0.01

-0.11

-0.21 A

50 -100

November 17, 2006

3 . !
-50 0 50 0.37925 0.38425 0.38925 0.39425
t (from 100 Hz)

Testing GR with Inspirals 29



Adv LIGO Sen3|t|V|ty to Insplrals

ﬂdsabat:r: Adiabatic, Nnnitnear,
Non-linear Non-linear, =1 F
Pert. V4
= 100 o
J -
= i/
&~ i S e /
— — Ringdown, q=0.9 : f
T Ringdown, q=0.0 ; A
N; - Merger /
— Inspiral ,‘f
~ !
< !
T '
% !
o {
% §
!
{
10 1 1 Lotk I 1 | g
10 100 1000

Mass (in MG)



Strong field tests of gravity
Consistency of Parameters
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Testing Post-
Newtonian

Gravity



GR two-body problem is ill-posed

e GW detectors are a tool to explore the
two-body problem and tests the
various predictions of general relativity
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Merger of supermassive black
holes no templates needed'

The high S/N at early

times enables LISA to 1 0 M
predict the time and
position of the

3 coalescence event,
10" F allowing the event to
- be observed
simultaneously by
other telescopes.
Cutler and Vecchy

Signal to noise ratio / (41)"?

7 4
10* M,

10 |l T LILI | L1l | Ll | el | 1T 11II | Ll | L Ll | LIl | 1
00 100 100 100 100 10° 100 10° 10

BH Mass: (1+2) M (M)



Phasing Formula for GW akin to
Timing Formula for Binary PSRs

b(t) = _i{1 Newtonian
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Gravitational wave talils
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Phasing Formula for GW akin to
Timing Formula for Binary PSRs
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Signal In the Fourier Domain
h(f) = f_z h(t) exp(2mi f)dt

R(H) = AfTT/0eV)

_ ¢ 3 L 45/6
2 rrll 3 384M

W(f) =2nfte+ Do+ wpf 3,
k

Here t~ and &$-~ are the fiducial time- and
phase-offsets of of the signal.
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Relative errors

Total Mass of the binary (M)
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Testing other PN effects in LISA

ml-m2 Plane. p = 10*
|

) 2
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- - i
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Testing the presence of log
terms

m2 Plane. o = 1068

e In this test we keep 4, \
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Consistency of PN Coefficients
includilng Iog-terms
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Cosmology



Inspirals can be seen to cosmological
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Cosmology and Astronomy from
Stellar Mass Binary Coalescences

e Cosmology
- Measure luminosity distance to within 10% and, with the ™~ Vel

aid of EM observations of host galaxies, determine o'/(—\\.
cosmological parameters; binary coalescences are /v\
standard candles, build a new distance ladder, measure

d (z); infer about dark matter/energy ke

e Search for EM counterpart, e.g. y-burst. If found:

L
- Learn the nature of the trigger for that y-burst, deduce .

relative speed of light and GW’s: ~ 1 / 3x10° yrs ~ 10/ ~
- measure Neutron Star radius to 15% and deduce
equation of state
e Deduce star formation rate from coalescence
rates
Testing GR with Inspirals 41
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In conclusion



Ground-Based Detectors: Nearby
to High-z Universe
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LISA: Fundamental Physics,
Astrophysics and Cosmology
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