QuickTime™ and a IIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Astrophysical constraints on BH-NS and NS-NS mergers and the short GRB redshift distribution

Richard O'Shaughnessy

U. Chicago, KICP Feb 23, 2007

Outline

- Gravitational Wave Searches for Binaries
- How to Make Compact Binaries
 - Population synthesis
- Predictions and Constraints: Milky Way
 - Comparing predictions to observations
 - Physics behind comparisons : what we learn
 - What if a detection?
- Why Ellipticals Matter
 - Two-component star formation model
- Predictions and Constraints Revisited
 - Prior predictions
 - Reproducing Milky Way constraints
- Short GRBs
- Conclusions

Collaborators

- V. Kalogera
- C. Kim
- K. Belczynski
- T. Fragos
- J. Kaplan

Northwestern Cornell New Mexico State/Los Alamos Northwestern Northwestern

• LSC

(official LIGO results)

Big Picture

EM Waves

Source:

~any accelerating charge

Strong coupling:

Imaging often practical: (common sources) >> wavelength

- Easy to make & detect
- Easy to obscure

Big Picture: Spectrum

Detectors

Pulsar timing CMB fluctuations

Space-based interferometers (LISA)

LIGO (running)

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture. Ground-based interferometers (LIGO/VIRGO/GEO/TAMA)

Big Science Payoff

Test GR (in detail)		Stars near galaxy centers		
• Orbits agree	EMRI mergers	Capture rates		
• Spacetime agrees	EMRI mergers			
 <u>Cosmology</u> Trace galaxy mergers? Waves from inflation? 	Binary mergers Stochastic	 <u>Small compact binaries</u> Map all faint, close ("white dwarf") binaries Mass transfer, tidal coupling, 		
<u>Nuclear physics</u> Compressibility of nuclear matter	NS disruption NS surface bumps	Understand stellar evolution• Mass transfer ratesBinary mergers• Maximum NS massBinary mergers		
 <u>Supernovae</u> Constrain asymmetry and kick Spin imparted? 	Supernovae bursts Binary mergers Binary mergers	 <u>Reveal mystery : GRB engines</u>: Hypermassive NS? Merger-driven? 		
and much more				

Small effect at earth!

Example: •

Two black holes Newtonian circular orbit

$$f = 2f_{orb} = 2(\Omega / \pi)$$

$$f = \frac{10^{3} Hz}{(M / 8M_{o})^{-1} (r / 6M)^{-3/2}}$$

r

Characteristic relative length changes \bullet

$$\sim (\text{kinetic energy})/(\text{distance})$$

$$h \sim \frac{1}{d} \frac{d^2 I}{dt^2} \sim \frac{Mv^2}{d} \sim \frac{M}{d} (\Lambda = \frac{M^2}{d})^{5/3} (M/3)^{5/3} (M$$

d

• Present sensitivities: LIGO

LIGO sensitivity page

• Present sensitivities: Others

Valiente, GWDAW-11

• Lots of astrophysically relevant data:

Example: Average distance to which 1.4 M₀ NS-NS inspiral range (S/N=8) visible

> QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Range depends on mass

- For 1.4-1.4 M_o binaries, ~ 200 MWEG (# of stars <-> our galaxy) in range
- For 5-5 M_o binaries, ~ 1000 MWEGs in range
- <u>Plot</u>: Inspiral horizon for equal mass binaries vs. total mass

(horizon=range at peak of antenna pattern; ~2.3 x antenna pattern average)

... using only the

- 'inspiral signal' (=understood)
- no merger waves
- no tidal disruption influences

Gravitational plane waves

- Stretching and squeezing Perpendicular to propagation
- Two spin-2 (tensor) polarizations

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

 $h \sim \Delta L/L$

Detecting gravitational waves

• <u>Interferometer</u>:

- Compares two distances
- Sensitive to

$$f \approx 1/t_{store}$$

[tunable]

 Each interferometer = (weakly) directional antenna

Jay Marx, <u>Texas symposium 2006</u>

Measuring inspiral sources

Using only 'inspiral' phase ____[avoid tides, disruption!]

- <u>Mass</u> Must match! df/dt -> mass
- <u>Distance</u>

$$SNR \propto \frac{M^{5/6}}{d}$$

- Location on sky
- Orbit orientation
- (Black hole) spin

Precession Only if extreme

Sample uses: short GRBs

sor ure.

- 1) Easily distinguish certain short GRB engines:
- 'High' mass BH-NS merger
- NS-NS merger

2) Host redshifts w/o afterglow d a ressor association

Interpretation Challenge

"We saw three binary mergers...now what?"

Preparing to interpret measurements (detections and upper limits)

sometimes many are needed

Statistics of detection:

- If we detect several <u>binary mergers</u> we need to know how likely we are to see this many:
 - How many binary stars are in range?
 [Galaxy catalogs, normalization]

better than 30%??

- What formation channels could produce mergers this often?
- What channels could produce these *specific* mergers?

...most of this talk

Outline

- Gravitational Wave Searches for Binaries
- How to Make Compact Binaries
 - Evolution of gas to merger
 - Observable phases
 - Population synthesis and *StarTrack*
- Predictions and Constraints: Milky Way
- Why Ellipticals Matter
- Predictions and Constraints Revisited
- GRBs
- Conclusions

Observed pulsar binaries

• <u>Hulse-Taylor binary</u>:

(Nobel Prize, 1993)

Ο Cumulative shift of periastron time (s) -5 -10 -15 -20 PSR B1913+16 General Relativity prediction -25 Weisberg & Taylor 03 -301975 1980 1985 1990 1995 2000 Year

PSR 1913 + 16 -- Timing of pulsars

Prediction from general relativity

- spiral in by 3 mm/orbit
- rate of change orbital period

Binary stellar evolution

Complex process

- Outline of (typical) evolution:
 - Evolve and **expand**
 - Mass transfer (perhaps)
 - Supernovae #1
 - Mass transfer (perhaps)
 - Supernovae #2

Note

- •Massive stars evolve faster
- •Most massive stars supernova, form BHs/NSs
- •Mass transfer changes evolutionary path of star

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.

Movie: John Rowe

Binary stellar evolution

Parameterized (phenomenological) model

- <u>Example</u>: Supernovae kicks
 - Neutron stars = supernovae remnants
 - Observed moving **rapidly** :
 - Supernovae asymmetry --> kick
 - Model:

"Two-temperature thermal" distribution

Many parameters (like this) change results by x10

Observations suggest preferred values **conservatively**: explore plausible range

Hobbs et al

StarTrack and Population Synthesis

Population synthesis:

- Evolve *representative sample*
- See what happens

Variety of results

Depending on parameters used...

• Range of *number of binaries per input mass*

Plot: Distribution of mass efficiencies seen in simulations

Priors matter

a priori assumptions about what parameters likely influence *expectations*

StarTrack and Population Synthesis

Population synthesis:

- Evolve *representative sample*
- See what happens

Variety of results

Depending on parameters used...

- Range of *number of binaries per input mass*
- Range of *delays between birth and merger*

Plot: Probability that a random binary merges before time 't', for each model

Priors matter

a priori assumptions about what parameters likely influence *expectations*

Outline

- Gravitational Wave Searches for Binaries
- How to Make Compact Binaries
- Predictions and Constraints: Milky Way
 - Observations (pulsars in binaries) and selection effects
 - Prior predictions versus observations
 - Constrained parameters
 - Physics behind comparisons : what we learn
 - Revised rate predictions
 - What if a detection?
- Why Ellipticals Matter
- Predictions and Constraints Revisited
- GRBs
- Impact of detection(s)?
- Conclusions

Observations of Binary Pulsars

Observations

- 7 NS-NS binaries
- 4 WD-NS binaries

Rate estimate Kim et al ApJ 584 985 (2003)

(steady-state approximation)

Number + 'lifetime visible' + lifetime + fraction missed

=> birthrate

+ error estimate (number-> sampling error)

Note:

 Only possible because many single pulsars seen: Lots of knowledge gained on selection effects Applied to *reconstruct* N_{true} from N_{seen}

Kim et al ApJ 584 985 (2003) Kim et al astro-ph/0608280 Kim et al ASPC 328 261 (2005)

Kim et al ApJ 614 137 (2004)

Predictions and Observations

Formation rate distributions

- Observation: shaded
- Theory: dotted curve
- Systematics : dark shaded

Allowed models?

- Not all parameters reproduce observations of
 - NS-NS binaries
 - NS-WD binaries (massive WD)

--> potential constraint

Plot Merging (top), wide (bottom) NS-NS binaries

Accepted models

Constraint-satisfying volume

7d volume:

- Hard to visualize!
- Extends over 'large' range: <u>characteristic extent</u>(each parameter): 0.09^{1/7}~0.71

Accepted models

Parameter distributions

- Not all parameter combinations allowed **Examples**:
 - Kick strength: $v_1, v_2 \sim 300$ km/s
 - CE efficiency: $\alpha\lambda$ >0.1
 - Mass loss : $f_a < 0.9$

Lots of physics in correlations

Physics of comparison

Physics implied by constraints

• <u>Kick strength</u>: v₁,v₂~ 300 km/s Pulsar motions ~ measure supernova kicks [e.g., Hobbs 2006]

Preferred kicks ~ **consistent with observations** (*without* imposing that as a constraint)

Physics of comparison

Physics implied by constraints

• <u>CE efficiency</u>: $\alpha\lambda > 0.1$

CE efficiency = fraction of orbit energy needed to eject envelope surrounding two cores

Low $\alpha\lambda$:

- closer final orbit needed to eject envelope
- some binaries merge in CE phase!
 - NS-NS rate down
 - BH-NS rate up (often)
 - BH-BH rate up brings together distant holes

Plot: BH-BH merger rate versus $\alpha\lambda$; low $\alpha\lambda$ imply high rate

Excluding low:

- High NS-NS rate needed to match observations
 - Low $\alpha\lambda$ can't make it
- Posterior rate prediction: *lower* BH-BH rate

Revised rate predictions

Rate predictions change...

- Solid: Prior
- Dashed: After constraint

Warning: Priors matter

- Exact mean, probabilities depend on priors/assumptions
 - (= range of parameters allowed)
- *Trend* of change (before vs after) rather than specifics
 - Fewer BH-BH
 - More NS-NS (of course)

LIGO detection rates

Constrained LIGO detection rates

Assume all galaxies like Milky Way, density 0.01 Mpc⁻³

Detection: A scenario for 2014

Scenario: (Advanced LIGO)

Observe n ~ 30 BH-NS events [reas

[reasonable]

Potential

- •Stringent test of binary
 - evolution model already!
- •Stronger if
 - •Orbit distribution consistency
 - •More constraints

macpenaer	<u>It onamens (caen depends un</u> terentity on model params) >
TT 1	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Volume	
D	$r_{0} = 0.0 \times (0.00) 2 \pi 1/7 = 0.0 4$
Parame	

Outline

- Gravitational Wave Searches for Binaries
- How to Make Compact Binaries
- Predictions and Constraints: Milky Way
- Why Ellipticals Matter
 - Two-component star formation model
- Predictions and Constraints Revisited
 - Prior predictions
 - Reproducing Milky Way constraints
- GRBs
- Conclusions

Importance of early SFR

Long delays allow mergers in ellipticals now

- Merger rate from starburst:
- SFR higher in past:

 $R \sim dN/dt \sim 1/t$

- 10

Ū

- 12

Two-component SFR

SFR

[Nagamine et al 2006]

• Separate elliptical, spiral!

Reliable?

- Normalization ok
- Spiral/elliptical ratio ok
- Time dependence reasonable

... uncertainty smaller than popsyn

Nagamine et al <u>astro-ph/0603257</u>

Predictions and constraints

Two-component predictions:

– <u>Each prediction</u> =

Rate density (/vol/time) versus time for **each** of ellipticals, spirals

...mostly **unobservable** (<u>except</u> now in Milky Way)

Example: NS-NS merger rate in spirals

 Rate extrapolated from Milky way: R_s=0.25-4 Myr⁻¹Mpc⁻³

→ consistent parameters

 unfinished / pending
 → revised merger & LIGO rates
 discuss in context of short GRBs

Outline

- Gravitational Wave Searches for Binaries
- How to Make Compact Binaries
- Predictions and Constraints: Milky Way
- Why Ellipticals Matter
- Predictions and Constraints Revisited
- GRBs
 - Review + the short GRB merger model
 - Short GRB observations, the long-delay mystery, and selection effects
 - Detection rates versus L_{min}
 - Predictions versus observations:
 - If short GRB = BH-NS
 - If short GRB = NS-NS
 - Gravitational waves?
- Conclusions

Short GRBs: A Review

Short GRBs: A Review

Merger motivation?

• No SN structure in afterglow

GRB 051221 (Soderberg et al 2006)

• In both old, young galaxies

Selected short GRBs						
GRB	Host	L/L_*	SFR			
			<i>M</i> ⊙/yr			
050509b	E	3	< 0.1			
050709b	Sb/Sc	0.1	0.2			
050724	E	1.5	< 0.03			
051221	S	0.3	1.4			
060502	E	1.6	0.6			
(Nakar, 2006 : Table 3)						

•Occasional host offsets

GRB 050709 (Fox et al Nature 437 845)

• Energetics prohibit magnetar

Observables: Detection rate?

Conclusion:

The number (rate) of short GRB observations is a <u>weak</u> constraint on models

Observables: Redshift distribution

Redshift distribution desirable

- Low bias from luminosity distribution
- Well-defined statistical comparisons Kolmogorov-Smirnov test (=use maximum difference)

Observed redshift sample

• Need sample with *consistent selection effects* (=bursts from 2005-2006, with Swift)

Problem: Possible/likely bias towards low redshifts

<u>BH-NS?</u>:

- Predictions:
 - 500 pairs of simulations
 - Range of redshift distributions
- Observations:

O'Shaughnessy et al (in prep)

Key

Solid: 25-75%

Dashed: 10-90%

Dotted: 1%-99%

<u>BH-NS?</u>:

- Predictions that agree?
 - Compare *cumulative distributions*:

dominated by low redshift

maximum difference < 0.48 everywhere

[95% Komogorov-Smirnov given GRBs]

- Compare to well-known GRB redshifts since 2005

[consistent selection effects]

<u>BH-NS?</u>:

- Physical interpretation
 - Observations : Dominated by recent events
 - Expect:
 - Most mergers occur in spirals (=*recent* SFR) and High rate (per unit mass) forming in spirals
 - or Most mergers occur in ellipticals (=old SFR) and High rate (per unit mass) forming in elliptical and Extremely prolonged delay between formation and merger (RARE)

Plot: f_s : fraction of mergers in spirals (z=0)

• Consistent...but...

Short GRBs appear in ellipticals! BH-NS hard to reconcile with GRBs??

Mostly in spirals

O'Shaughnessy et al (in prep)

<u>BH-NS?</u>:

- Conclusion = confusion
 - Theory + redshifts : Bias towards recent times, spiral galaxies
 - Hosts: Bias towards **elliptical** galaxies
- What if observations are *biased* to low redshift?
 - strong indications from deep afterglow searches

[Berger et al, <u>astro-ph/0611128</u>]

Makes fitting easier
 Elliptical-dominant solutions
 ok then (=agree w/ hosts)

Point: Too early to say waiting for data; more analysis needed

15

<u>NS-NS?</u>:

– Expect:

- Physical interpretation
 - Observations : GRBs
 - Dominated by **recent** events

-Observations: Galactic NS-NS

• High merger rate

-Expect -High merger rate in spirals

- Recent spirals dominate or
- or Ellipticals dominate, with long delays

Plot: f_s : fraction of mergers in spirals (z=0)

• Consistent...but...

Short GRBs appear in ellipticals! NS-NS hard to reconcile with GRBs and problem *worse* if redshifts are biased low!

Conclusions

Present:

- Useful comparison method **despite** large uncertainties
- Preliminary results
 - Via comparing to pulsar binaries in Milky V
 - Low mass transfer efficiencies forbidden
 - Supernovae kicks ~ pulsar proper motions
 - BH-NS rate closely tied to min NS mass/CE
 - Via comparing to short GRBs?
 - Conventional popsyn works
 - Expect GRBs in **either host**
 - Spirals now favored; may change with new -formation history
 - Short GRBs = NS-NS? hard
 - Short GRBs = BH-NS? easier
- Observational recommendations
 - Galactic :
 - Minimum pulsar luminosity & updated selection
 - Pulsar opening angles
 - Model : Size and SFR history
 - Short GRBs :
 - $\mathbf{D}_{-}\mathbf{A}^{\bullet}$

(Long term) Wishes (critical)

-reliable GRB classification -short burst selection bias? -deep afterglow searches

: weak const : spirals form (less critical)

: few co -formation properties : fewer

(Z, imf) [mean+statistics] for **all** star-forming structures

Conclusions

Future (model) directions:

- More comparisons
 - Milky Way
 - Pulsar masses
 - Binary **parameters** (orbits!)
 - Supernova kick consistency?
 - Extragalactic
 - Supernova rates
- Broader model space
 - –Polar kicks?
 - -Different maximum NS mass
 - [important: BH-NS merger rate sensitive to it!]
 - -Different accretion physics

Goal:

- show predictions *robust* to physics changes
- if changes matter, understand why (and devise tests to constrain physics)

