

Studies of Thermal Loading in Pre-Modecleaners for Advanced LIGO

Amber Bullington Stanford University LSC/Virgo March 2007 Meeting Optics Working Group

Outline

• Thermal Loading Experiment

- » Ring cavity known as pre-modecleaner (PMC)
 - Same geometry as cavity used in the PSL
- » Goal: Achieve resonant thermal load akin to Advanced LIGO
 - Use calibrated absorption loss
 - Reach absorption comparable to Advanced LIGO
 - ~12 mW per suspended MC optic for 0.5 ppm coating absorption
 - Compare results to models

Results

- Onset of thermal loading
- » Thermal limits

• For the future

- » Further tests
- » Suggestions

A Pre-Modecleaner

Experimental Setup

Pre-Modecleaner Properties

• Dominant thermal load in coatings

- » Low-loss coatings coated by Research Electro-Optics
- » Absorption loss measured by PCI
 - Flat I/O optics: 1.4 ppm
 - Curved optic: 0.4 ppm
- 'Lossy' pre-modecleaner

- » Low-loss fused silica input/output optics
- » Rear optic: low-loss coating on absorptive substrate
 - IR absorbing glass: KG5
 - KG5 optic coating transmission: 81 ppm
- 'Low-loss' pre-modecleaner
 - » REO coatings on BK7 substrates
- Resonances of different polarizations do not overlap
 - Low Finesse (p-pol) ~ 330
 - High Finesse (s-pol) ~ 5000

'Lossy' Pre-Modecleaner – Low Finesse

• Increase input power in steps

- » Analyze transmitted TEM₀₀ content
- Higher order mode overlap with TEM₀₀
 - » Occasional overlap seen as power is increased
 - » Roll-off in TEM₀₀ content at high absorbed power

Transmitted CCD Image - 'Lossy' PMC

Transmitted TEM00 Mode Content

CCD Image – Mode Analyzer PMC

'Lossy' PMC Thermal Limit

Thermal Limit

LIGO

- Transmission linear up to 5 W input power (P_{absorbed} = 40 mW)
- » For P_{absorbed} > 40 mW, higher order modal content degrades transmitted beam quality
- » For P_{absorbed} > 47 mW, constant locked transmitted power not achieved

'Lossy' PMC Images Transmitted Beam Reflected Beam

Input Power = 6 W, $P_{absorbed} = 47 \text{ mW}$

Mode Analyzer Transmission

LIGO Thermally Induced Power Fluctuation

- Power fluctuation from thermal effects
 - » Lossy PMC: Thermal cycling induces periodic fluctuation of transmitted power
- Transmitted mode images
 - 1: near maximum power
 - 2: during power decline
 - 3: near minimum power

2

3

Modal Analysis

Resonant Frequency of qth TEM_{00} and $\text{TEM}_{11,0}$ Mode vs g-Factor Higher order mode overlap with Relative Frequency, normalized to FSR TEM₀₀ **TEM**_{11,0} Change in cavity g-factor: g = 1 - L/R**》** Change in Radius of Curvature **》** (ROC) of KG5 optic New g factor gives thermally distorted radius of curvature, R_{hot} Cold cavity g factor = 0.79**》** TEM₀₀ $-R_{cold} = 1 m$ Example: TEM₀₀/TEM_{11.0} overlap **》** - Hot cavity g factor = 0.830, 0 0.2 D40.6 $-R_{hot} = 1.2 m$ g factor Calculate absorbed power from Calculated Input R_{hot}, compare with expected Power Absorbed absorption Power Power $P_{absorbed} = (4\pi\kappa\delta s)/\alpha$ **》** 13 mW 9 mW 1 W

'Lossy' Pre-Modecleaner – High Finesse

Transmitted Beam, $P_{abs} \sim 4 \text{ mW}$

Mode Analyzer

9

Mode Analyzer, $P_{abs} \sim 10 \text{ mW}$

Strong higher order mode coupling

LIGO

- » First observation at 4.25 mW absorbed power
 - Several TEM_{mn}, large m+n, modes
 - 96 % TEM₀₀ output

Degradation of TEM₀₀ output

- » Increased absorbed power
 - Multiple higher order mode coupling
 - Sometimes one dominant higher order mode
- » Lowest TEM₀₀ transmission 57% at 12 mW absorbed power

'Low-loss' Pre-Modecleaner

- REO coatings on BK7 substrates
- High finesse
 - » Higher order modes at a few absorbed powers, starting at $P_{abs} = 5.1 \text{ mW}$
 - » Rollover in transmission > 20 mW absorbed power
- Low Finesse
 - » First higher order mode coupling noted near max available input power, P_{abs} = 5.1 mW

- Reduced transmission in high finesse for both pre-modecleaners
 - » 30% coupling, expect closer to 80%
 - » Scatter loss from curved optic
 - » Response to thermal load agrees with expected absorption
- Melody

- » Mode-based interferometer thermal modeling tool
- » Limited agreement with data
 - Thermal loading of 'Lossy' PMC in low finesse
 - Differing behavior for thermal loading in high finesse
 - Melody shows sharp coupling decline without higher order mode coupling

Summary

- Transmission degradation from higher order mode coupling
 - » Stronger coupling in high finesse case
 - » Large thermal load may induce power fluctuations

• Recommendations based on observations

- » Coating absorption <= 1ppm</p>
- » Higher finesse -> lower absorption
 - From experiment, < 4 mW
 - Scale results to other substrate materials
- » Aperture to suppress large order modes
 - Suspended modecleaner
- » Consider alternative geometry
 - 4-bounce pre-modecleaner?
 - Advantage: reduce mode overlap possibility
 - Disadvantage: not polarization sensitive

• For the future ...

- » Test pre-modecleaners with sapphire and undoped YAG optical substrates
- » Design an all-reflective modecleaner using gratings
 - Expand substrate possibilities (e.g. silicon)