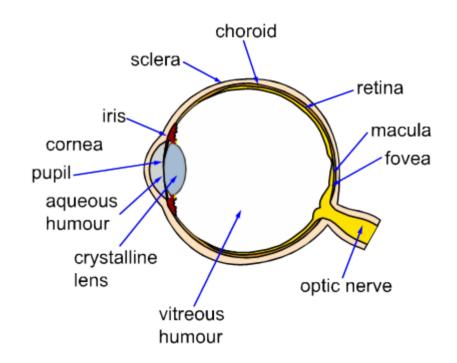


AdLIGO PSL Safety Plan

Peter King
LIGO Laboratory – Caltech
LIGO/VIRGO March 2007
Lasers Working Group
G070136-00-D

AdLIGO PSL Laser Safety Plan


- The laser safety is to be based on ANSI Z136.1.
 - » No fundamental changes from Z136.1-2000 to Z136.1-2007 as far as calculation of the maximum permissible exposure (MPE) levels and the accessible emission limit (AEL) is concerned.
- With the advent of the 200 W laser, now is a good time to review our practices.
 - » Are existing practices sufficient? Unwieldy?
 - » What, if any, changes shall we make?

The Eye

• Why bother?

- » Eye injuries tend to be irreversible in nature.
- » Even low power beams can produce high intensity spots on the retina.

Terminology

- Accessible Emission Limit (AEL)
 - » The maximum accessible emission level within a class of laser that human eye or skin may be exposed to.
 - » For a Class 4 laser operating at 1064nm the AEL is 0.5 W.
- Maximum Permissible Exposure (MPE)
 - » The level of exposure that can be thought of as the border line between safe and potentially harmful. The MPE depends on the wavelength and exposure duration.
 - » Two MPEs apply: ocular and skin exposure MPE.

The Advanced LIGO Laser

Assumed properties:

- » wavelength $\lambda = 1064$ nm
- » total power P = 200 W
- » output beam size $w_0 = 150 200 \mu m$

Also need to consider the output of the pump diodes:

- » wavelength $\lambda_p = 808 \text{ nm}$
- » total power $P_p = 315 \text{ W}$
- » output beam size $w_p = 1 \text{ mm}$

For classification purposes:

- » 200-W laser is an extended source
- » pump diodes are a small source

Power Levels

- At 1064 nm:
 - » ocular AEL is 4.4 mW
 - » skin exposure AEL is 96 mW
- At 808 nm:
 - » ocular AEL is 118 mW
 - » skin exposure AEL is 32 mW
- Dump all beams above the ocular MPE mandatory.

Safety Eyewear Requirement

- The optical density (OD) of laser safety eyewear must bring the output power of the source down to the ocular MPE level.
 - » minimum OD of +4.7 at 1064 nm
 - » minimum OD of +5.7 at 808 nm

Suggested Plan

- Restricted access to diodes and laser.
- Use beam tubes.
- During installation, manipulation of objects in the high power beam path requires a person to scan the optical table during the activity.
- Use of phone or intercom link to coordinate activities between the diode enclosure and the laser enclosure (if any).