

Recent Parametric Instability Modeling

Bill Kells Caltech LIGO

G070145-00-Z

LIGO PI "R" calculation from entire cavity field

• Previous: model arm cavity field as discreet SHOs

$$R = \frac{4PQ_m}{mL\omega_m^2 c} \left(\sum_{\substack{i \ Stokes}} \frac{Q_i^s \Lambda_i^s}{1 + (\Delta \omega_i^s / \delta_i^s)^2} - \sum_{\substack{j \ a-Stokes}} \frac{Q_j^{as} \Lambda_j^{as}}{1 + (\Delta \omega_j^{as} / \delta_j^{as})^2} \right) \underbrace{Each \text{ acoustic } \{m, w\}}_{Braginsky, Vyatchanin}$$

- Cavity specific modes {j}, Q_j , Λ_{jm} need accurate specification
 - » Proves difficult for modest order HTMs: high loss/distortion
 - » Is a significant "background" PI missed (K. Thorne, W. Kells: aS ~cancels S)?
- Now: build on FFT tool, ideally suited to net SS field from $<<\lambda$ static distortions (acoustic surface amplitude from FEA)

$$R = \frac{4PQ_m}{m\omega_m{}^2c} \left(\frac{V\int |E_0^s|Im(E_{bk}^s)u_z dA}{\int |E_0^s|^2 dA \int |\vec{u}|^2 dV} - \frac{V\int |E_0^{as}|Im(E_{bk}^{as})u_z dA}{\int |E_0^{as}|^2 dA \int |\vec{u}|^2 dV} \right)$$

• Instead of SB(+/- f_m) modes: FFT cavity length shifted by $\pm \frac{\lambda}{2} \frac{f_m}{FSR}$ for proper Stokes (a-Stokes) simulation.

LIGO FFT "R' values: AdvLIGO arm

• Complete **R**^S-**R**^{aS} for AdvLIGO arm

Full Ifo: essential Features

• Single arm only

LIGO

- » PI gain strongly depends on Q_m and Q_i
 - For AdL this limits plausible {m} to $f_m < 90$ kHz, ~3-4000 Stokes dominated modes
 - Above at least 6th order {j} cavity loss too high
 - 1st order (tilt) and perhaps 2nd order (curvature) special (control possible).

• PRC only (AdL parameters)

- » ~10x recycling enhancement of PI gain. However:
 - This peaking is ~10x narrower (+/-2 Hz tune of PI mode from arm res.)
 - Arms must have nearly same Gouy phase (Δ ROC <1-2m)
 - No enhancement (over arm alone PI gain) for > 3d order Pi modes (too lossy)

• PRC + SRC (AdL parameters) LIGO-T060159 & G060475 (Braginsky, Vyatchanin, et al TBP)

- » Peak gain enhancements (& widths) < PRC alone.
- » Significant "pulling" of peaks with SRC phasing (GW detuning + Gouy multiplet)
- » Certain phases are dangerous: $\triangle \text{ ROC}_{arm}$ "protection" obviated

Recycled tuning landscape

Fine Tuning !?

- Incorporating SRC/PRC stability DOF, can AdLIGO optics configuration be "tuned" to mitigate PI?
- Generally: no. Special case: confocal PRC + △ROC large (D. Ottaway) can suppress all PI mode gains of concern large factor below single arm value.

PI gain widths !

- SRC increases enhancement ridge "area" in 2 arm tuning
- Large SRC Gouy phase range leaves ridge unavoidable for allowed ∆ROC
- However, width of ridge is also critical !
 Likelihood of "hitting" enhancement:
 ~(enhancement width)/FSR =4Hz/38kHz
 x ~6000/2 acoustic modes x 4 TM x 2-3 HTMs
 = order 3 probable cases
 2
- Already PRC reduces width factor 2

LIGO

 SRC narrows further, so may actually be Advantageous if a very few exact resonances can be avoided (e.g. thermal tuning)

