

The GEO600 detector:

Status and Plans

Stefan Hild (AEI Hannover) for the GEO-Collaboration

LIGO-G070172-00-Z

Stefa

Universitat de les Illes Balears

The GEO600 detector

Participation / Performance in S5

Recent efforts

- gain understanding of detector
- improving the detector / reduction of glitches

2

- necessary maintenance work
- test mass discharging
- Plans for the future

3

Stefan Hild

LSC/Virgo meeting, Baton Rouge, March 2007

4

No arm cavities, but folded arms:

- High PR factor (~1000)
- High power in BS substrate (~kW)
- Very low absorption of BS substrate (< 0.25 ppm/cm)

<u>Electro-Static</u> Drives:

• Used for fast control of diff. armlength

• Near future: also used for autoalignment.

6

Signal-Recycling:

- Shaping detector response
- Complicated detector (resonance conditions with detuned SR)
- GW signal is spread over both quadratures *P* and *Q*.

Most of 2006 GEO600 participated in S5.

O&WE-mode 1:

20th January – 1st May Science time = 46.5%

Most of 2006 GEO600 participated in S5.

O&WE-mode 1:

20th January – 1st May Science time = 46.5%

<u>24/7:</u>

1st May – 16th October Science time = 90.7%

Strategic Decision @ October GEO-meeting:

- Input: LSC data analysis groups, LSC operations committee, Benefit/Risk-analysis from commissioning team.
- **Result:** O&WE-mode period 2
 - Gain understanding of the detector
 - Improving GEO600
 - Maintenance work required to prepare GEO for a long science run in 2008

Most of 2006 GEO600 participated in S5.

Strain sensitivity of LSC IFOs in S5

Displacement sensitivities in S5

Average peak sensitivity better than 3e-22/sqrt(Hz)

- Nullstream veto
- Chi^2 veto
- Noise projection vetos
- Statistical vetos

<u>*M Hewitson*</u> et al: Using the null-stream of GEO 600 to veto transient events in the detector output, CQG 22 No 22, 4903-4912

<u>*M Hewitson:*</u> Detector and data characterisation at GEO 600, in preparation

<u>*P Ajith*</u> et al: Robust vetoes for gravitational-wave burst triggers using known instrumental couplings, CQG 23 No 20, 5825-5837

<u>*S* Hild</u> et al: A statistical veto employing an amplitude consistency check, submitted to CQG

The GEO600 detector

- Participation / Performance in S5
- Recent efforts
 - gain understanding of detector
 - improving the detector / reduction of glitches
 - necessary maintenance work
 - test mass discharging
- Plans for the future

Improved understanding of the detector: Laser power noise coupling

Laser power noise TFs using FINESSE match our measurements.

"Laser power noise coupling in GEO600", JR Smith, A Freise, H Grote, M Hewitson, S Hild, H Lück, KA Strain, B Willke, in preparation

- Found many glitches in GW signal at hour boundary (10 sec after)
- Coincident events in mains monitors
- Control signals created by power companies.
- Solution: Installation of mains filter.

LSC/Virgo meeting, Baton Rouge, March 2007

Reduction of particle concentration in the cleanroom

Glitches caused by dust falling through the laser beam in front of main photo diode.

(veto available for dust glitches)

January 2007: Improved dust filtering

Installation in March 2001 Failed due to corrosion in August 2004 Since then using the spares !!

Replaced in Febuary 2007

Fixed beam clipping inside Signal-**Recycling cavitiy**

the beam (blue arrows)

Piezo actuator

- Range of 28 mm
- Load: up to few 100g

Uncharching test mass by UV light

S. Rowan et al, CQG. 14 1537–1541 (1997):

Discharging by use of UV light to free electrons.

In our case:

• UV transmitted through test mass

- electrons are freed of the ESD electrodes
- electrons compensate positive charge on test mass

Sucessfully discharged the test masses

BEFORE

Noise projections

LSC/Virgo meeting, Baton Rouge, March 2007

The GEO600 detector

- Participation / Performance in S5
- Recent efforts
 - gain understanding of detector
 - improving the detector / reduction of glitches
 - necessary maintenance work
 - test mass discharging

Plans for the future

Peak sensitivity better than 3e-22/sqrt(Hz) for both tunings.

Around 1kHz GEO600 is about a factor 2 worse than the LIGO 4km Instruments.

Consider to use this tuning in the near term in order to improve the science impact of GEO600.

IDEA:

- Turning down the RF-modulation (factor 10 is possible)
- Using an offset from dark fringe (of the order of 50pm)
- \Rightarrow Dark port dominated by carrier light

Results from first Experiments with DC-readout

- Stable interferometer with reduced modulation and dark fringe offset:
 - Locking with heterodyne signal, readout with DC signal
 - Locking with DC (homodyne) signal, readout with DC signal
- Above 1kHz a sensitivity competitive to heterodyne readout is achieved
- So far no optimisation or noise hunting took place

What might be gained from DC-readout

Improving sensitivity & detector stability:

- Implement ESD-Autoalignment
- Reduce scattered light (larger viewports in endstations)
- Increase circulating light power
- Tuning flexibility
- DC-readout scheme
- Datataking in 2008 to cover the period when LIGO and Virgo are going to upgrade.

Combination of tuned SR and squeezed – An option for GEO HF?

Squeezed light is available for injection

"Coherent Control of Vacuum Squeezing in the Gravitational-Wave Detection Band", Vahlbruch et al, PRL 97, 011101 (2006)

Tuned Signal-Recycling operation was demonstrated

"Demonstration and comparison of tuned and detuned Signal-Recycling in a large scale gravitational wave detector", S Hild et al, CQG. 24 No 6, 1513-1523.

\Rightarrow No need for long filter cavity !

32

Plans of the GEO collaboration

END