Development and Characterisation of Fused Silica Ribbon Fibres for Gravitational Wave Detectors

Rencontres de Moriond 12th March 2007

Alastair Heptonstall Institute for Gravitational Research University of Glasgow

Heptonstall, Barton, Cagnoli, Cumming, Faller, Hough, Jones, Martin, Rowan, Strain, Zech

LIGO-G070196-00-Z

Monolithic suspensions for advanced detectors

- Development of monolithic suspensions is based on experience from the GEO600 suspensions
- This talk will cover aspects of production and testing of suspension elements suitable for Adv. LIGO and 'Adv. Virgo'
- The criteria that must be met by ribbon fibres for Adv. LIGO:
 - Strength (x3 safety margin)
 - Thermal noise performance
- To meet these criteria we require
 - Breaking stress > 2.4 GPa
 - •Intrinsic loss $<3 \times 10^{-11}$ /t, where t is the thickness of the ribbon

Improving fibre pulling technology

- Advanced LIGO suspensions require ±1.9% tolerance on fibre dimensions.
- This is a slight increase on the ±2.1% achieved in GEO600.
- Repeatability and tolerance in flame pulling machines is limited by gas regulation and slack in mechanical parts.
- A new machine was developed in Glasgow using a CO₂ laser and high precision drive systems
- Designed for both ribbon and cylindrical fibre production to be suitable for both LIGO and Virgo upgrades.
- The machine is also capable of welding fibres.

Pulling fibres using the CO₂ laser

Virgo laser pulling machine installation

Controlled shaping of the neck

Mechanical loss in CO₂ laser pulled fibres

- Four Suprasil 300 fibres of diameter ~470μm were measured
- Initial analysis of losses shows a surface loss consistent with:

$$h\phi_{surface} = 4.7 \times 10^{-12} \,\mathrm{m}$$

From Penn et al we can calculate values:

for suprasil 2
$$h\phi_{surface} = 6.05 \times 10^{-12} \text{ m}$$

for suprasil 312 $h\phi_{surface} = 3.25 \times 10^{-12} \text{ m}$

 Suprasil 300 is not necessarily expected to be similar to 312 or 311 as it has a different manufacturing process and a lower OH content

Measured loss as a function of length

- Loss of higher frequency modes not dominated by thermoelastic loss
- $\phi_{bulk} \sim 2.4 \times 10^{-9}$ (using model by S. Penn)
- Do not expect surface loss to be length dependent
- Measurements show some extra source of length dependent loss

Measured loss as a function of length

- Weld represents a possible source of excess loss
- Model would then be:

$$\phi_{residual} = \phi_{surface} \frac{E_{surface}}{E_{total}} + \phi_{weld} \frac{E_{weld}}{E_{total}}$$

Finite element analysis of energy storage - *Steven Zech*, international summer student from Embry-Riddle University via NSF REU program

FEA -investigate the length dependence of energy stored in last mm of fibre

Analysis

$$\phi_{residual} = \phi_{surface} \frac{E_{surface}}{E_{total}} + \phi_{weld} \frac{A}{l}$$

where A is a constant

- For each fibre we can subtract the thermoelastic contribution and plot $\phi_{residual}$ vs 1/length
- Intercept provides information on magnitude of surface loss
- Gradient gives information on magnitude of loss associated with weld: $\phi_{weld} A$

Analysis of losses at welded interface

Interpretation

- Fibres of the same diameter clearly tend to same surface loss limit.
- Length dependent loss does appear at different levels in all fibres.
- If we assume a length for lossy section of 1mm we can calculate loss at the weld to be $\phi_{weld} \sim 6 \times 10^{-7}$ for the best weld seen here.
- Fibre welded above neck shows lowest gradient (or the lowest effect due to welding)

First fibre measured

Second fibre measured

Third fibre measured

Analysis of residual loss once thermoelastic contribution is removed

IGR

Frequency dependence of loss

- Some evidence of frequency dependence of loss in fused silica fibres seen for fibres of diameter greater than 1mm (A. Gretarsson PhD thesis)
- Here we see these effects in all fibres with diameters down to 320μm
- Well documented in bulk pieces (see eg. Penn et al or Numata et al)
- However here we would expect $\phi_{bulk} \sim 2.4 \times 10^{-9}$ (using model by S. Penn)
- This is dominated by loss from the surface layer by two orders of magnitude.
- Here level of contribution from the frequency dependent part of the loss causes an increase of $\Delta \phi = 3 \times 10^{-8}$ between 200Hz and 3kHz, a significant contribution to the loss at higher frequencies
- Frequency dependent dissipation is seen at similar levels in a number of fibres of different diameter
- To investigate source of this frequency dependent loss consider:

$$\phi_{measured} = \phi_{bulk}(f) + \phi_{surface} \frac{E_{surface}}{E_{total}} + \phi_{weld} \frac{E_{weld}}{E_{total}} + \phi_{thermoelastic}$$

Ribbon fibre development

Ribbon cross-sectional shape development

- First ribbon fibres pulled had a nonrectangular cross-section due to heat loss from edges.
- Laser was run at close to maximum power due to heat loss
- Polished aluminium heat shield was developed to reflect heat back at edges
- Further improvements to the symmetry of the fibre neck and cross section were achieved by using slides on either side to reduce the edge effects

Welding technology

Laser welding and silicate bonding tests

Improved ear design

- Reduces stress in ear
- Improves access for welding
- Increases the overlap area for weld

Reflection welding tests

Reflection welding tests

Conclusions

- Based on the experience of the flame pulling machines used for the GEO600 suspensions we have designed and built new fibre pulling machines using CO₂ lasers
- Laser pulled cylindrical fibres have a surface loss at a similar level to flame pulled fibres
- Data shows evidence of length dependent loss which appears to be related to the quality of weld
- There is strong evidence of frequency dependence in residual loss of fibres studied
- This appears to arise due to dissipation in the bulk of the fibre material but at a higher level of loss than is seen for larger 'bulk' samples
- Both the above effects need included in any model of suspension thermal noise in monolithic silica suspensions
- Further studies in progress

