

Broadband Search for Continuous-Wave Gravitational Radiation with LIGO

> Vladimir Dergachev (University of Michigan) LIGO Scientific Collaboration

APS meeting, Jacksonville April 14-17 2007

DCC: G070210-00-Z

Challenges of search for CW gravitational waves

- Gravitational waves from spinning neutron stars are expected to be weak – need to average over long time periods
- Several parameters to search for: frequency, sky position, spindown, polarization
- Coherent methods are very sensitive, but result in enormous search space size – broadband, all sky search is impractical for large time base
- PowerFlux place sky-dependent upper limits and detect signals by averaging power. Practical for all-sky broadband searches.

PowerFlux analysis pipeline

PowerFlux results

- PowerFlux produces a 95% CL upper limit for a particular frequency, sky position, spindown and polarization.
- Too much data to store, let alone present the number of sky positions alone is ~10^5 at low frequencies and grows quadratically with frequency
- The upper limit plots show maximum over spindown range, sky and all polarizations
- We also present a simple formula that approximates background curve within $\pm 50\%$
- Data from S5 science run: 7 Nov 2005 through 20 July 2006

Histograms (one entry per sky point)

Preliminary results

S5 science run sensitivity

H1 S5 0-spindown run

L1 S5 0-spindown run

Partial sky (targeted) run

- Searched sky around
 - globular clusters M55, NGC104
 - galactic center Sgr A*
 - Andromeda M31 (control)
- 100-700 Hz (clusters continuing to compute to 1000 Hz)
- -1.01e-8 Hz/s through 1.01e-8 Hz/s in 2e-10 Hz/s steps
- Background (cyan curve) can be described by the following formula:

$$Strain = 5.7 \cdot 10^{-25} \cdot \left[\left(\frac{f}{f_0} \right)^{0.9} + \left(\frac{f}{f_0} \right)^{-4.5} \right]$$

Here f is frequency and f0=132 Hz

Fresh results – followup not finished

Search area (for ~270 Hz, non-zero spindown)

Need to search different sky locations due to difference between possible source spindown and spindown sampled

NGC

104

M31

DEC

RA

M55

Sgr A*

Area decreases with frequency

H1 Sgr A* upper limits

Preliminary results

S5 summary curve deviation

Conclusion

- S5 run is still underway more data is being collected
- All-sky run multiple-spindown run to follow
- Looking in detail at the output of low-SNR coincidence algorithm

End of talk

S5 spindown-0 run

"S parameter"

Doppler Skybands

Skyband 0 (good – only exceptionally strong detector artifacts) Skyband 10 (worst – many detector artifacts)

DEC

RA

Hanford 4km upper limits are slightly higher than the summary curve, but much cleaner in low frequency range

S4 run results Hanford 4km

Livingston 4km upper limits are slightly lower than the summary curve, but not as clean in low frequency range

S4 run results Livingston 4km

Frequency