







**The Status of GEO600** 

Universitat de les Illes Balears

LIGO-G070342-00-Z







#### The GEO600 detector

Participation / Performance in S5

#### Recent efforts

- gain understanding of detector
- improving the detector / reduction of glitches
- necessary maintenance work
- ESD autoalignment
- DC-readout

#### Plans for the future







3.2W BDIPR No arm cavities, but MPR folded arms: T = 0.09MSR MCn MFn T=1.9% • High PR factor (2.7kW) (~1000) BS HOT BS COLD BS • High power in BS -1 В **Dutput bench** substrate (~kW) 90 • Very low absorption of BS substrate D **P(t) Q(t)** (< 0.25 ppm/cm)

4





6



<u>Electro-Static</u> Drives:

• Used for fast control of diff. arm length



• Also used for fast autoalignment (quadrants).







#### Charges on testmasses

- Measured positive charging of testmasses
- Discharged by using a UV-lamp (electrons are freed from ESD electrodes)







8



#### Signal-Recycling:

- Shaping detector response
- Complex detector (resonance conditions with detuned SR)
- GW signal is spread over both quadratures *P* and *Q*.







#### Most of 2006 GEO600 participated in S5.

9

### O&WE-mode 1:

20th January – 1st May Science time = 46.5%







#### Most of 2006 GEO600 participated in S5.

## O&WE-mode 1:

20th January – 1st May Science time = 46.5%

<u>24/7:</u>

1st May – 16th October Science time = 90.7%



#### **Strategic Decision @ October GEO-meeting:**

- Input: LSC data analysis groups, LSC operations committee, Benefit/Risk-analysis from commissioning team.
- **Result:** O&WE-mode period 2
  - Gain understanding of the detector
  - Improving GEO600
  - Maintenance work required to prepare GEO for a long science run in 2008





#### Most of 2006 GEO600 participated in S5.

### O&WE-mode 1:

20th January – 1st May Science time = 46.5%



11



## **Strain sensitivity of LSC IFOs in S5**







## **Displacement sensitivities in S5**







## LIGO-VIRGO Project 2b using Coherent Waveburst





I. Yakushin and S. Klimenko

http://ldas-jobs.ligo-la.caltech.edu/~igor/LV2/lv.html#26



- Nullstream veto
- Chi<sup>2</sup> veto
- Noise projection vetos
- Statistical vetos

<u>*M* Hewitson</u> et al: Using the null-stream of GEO 600 to veto transient events in the detector output, CQG 22 No 22, 4903-4912

<u>*M Hewitson:*</u> Detector and data characterisation at GEO 600, in preparation

<u>*P Ajith*</u> et al: Robust vetoes for gravitational-wave burst triggers using known instrumental couplings, CQG 23 No 20, 5825-5837

<u>*S Hild*</u> *et al: A statistical veto employing an amplitude consistency check, submitted to CQG* 

**Stefan Hild** 

LSC/Virgo meeting, Cascina, May 2007

16





#### The GEO600 detector

Participation / Performance in S5

#### Recent efforts

- gain understanding of detector
- improving the detector / reduction of glitches
- necessary maintenance work
- ESD autoalignment
- DC-readout

#### Plans for the future

## Improved understanding of the detector: Laser power noise coupling



#### Laser power noise TFs using FINESSE match our measurements.



"Laser power noise coupling in GEO600", JR Smith, A Freise, H Grote, M Hewitson, S Hild, H Lück, KA Strain, B Willke, in preparation

## Installation of mains filter



- Found many glitches in GW signal at hour boundary (10 sec after)
- Coincident events in mains monitors
- Control signals created by power companies.
- Solution: Installation of mains filter.





## Reduction of particle concentration in the cleanroom





Glitches caused by dust falling through the laser beam in front of main photo diode.

(veto available for dust glitches)

#### January 2007: Improved dust filtering









Installation in March 2001 Failed due to corrosion in August 2004 Since then using the spares !!

#### **Replaced in Febuary 2007**





Load: up to few 100g

## Sensitivity improvement from fast autoalignment using ESD-actuators



<u>Old:</u> Used **coil-magnet actuators** at intermediate masses (UGF = 5 - 8 Hz)

New: In additon also using **electro-static actuators** for fast autoalignment



ESDs give additional phase margin: • Increased stability

• Used for steeper filtering (lowpass)

## DC-readout without OMC



### **IDEA:**

- Turning down the RF-modulation (factor 10 is possible)
- Using an offset from dark fringe (of the order of 20pm)
- $\Rightarrow$  Dark port dominated by carrier light



## Results from first Experiments with DC-readout (detuned SR)



#### Stable interferometer with DC-readout and DC-lock



## Simulated shotnoise heterodyne vs DC-readout for various tunings.





- Shot noise in DC-readout smaller than in heterodyne readout
- In detuned Signal-Recycling the shape of the detector response is different for heterodyne and DC-readout







Tuned DC-readout might be a useful precursor for GEO-HF (option for squeeezed light input => no filter cavity necessary)





#### The GEO600 detector

Participation / Performance in S5

#### Recent efforts

- gain understanding of detector
- improving the detector / reduction of glitches
- necessary maintenance work
- ESD autoalignment
- DC-readout

#### Plans for the future





Improving sensitivity & detector stability:

- Find the optimal detector configuration for 2008:
  Implies the optimal detector configuration for 2008:
  Implies the optimal detector configuration for 2008:
- Reduce scattered light (larger viewports in endstations / baffles)
- Reduction of glitchrate
- Data taking in 2008 to cover the period when LIGO and Virgo are going to upgrade.

o



## **Plans of the GEO collaboration**





**Stefan Hild** 

LSC/Virgo meeting, Cascina, May 2007





# END