

Einstein@Home Hierarchical Search

R. Prix for the CW group

Albert-Einstein-Institut, Germany

LIGO-Virgo Meeting, Cascina, May 2007

What is Einstein@Home?

Search for GWs from spinning neutron stars with unknown sky-position, frequency & spindown: $\lambda = \{\alpha, \delta, f, \dot{f}\}$

Maximize available computing power

Cut parameter-space λ in small pieces $\Delta\lambda$ • Send workunits $\Delta\lambda$ to participating hosts

- Hosts return finished work and request next
- Public distributed computing project, launched Feb. 2005
- Currently \sim 160,000 active participants, \sim 80Tflops
- runs on GNU/Linux, Mac OSX, Windows,...
- Search for isolated neutron stars $f \in [50, 1500]$ Hz
- Aiming for detection, not upper limits
- Analyzed data from S3, S4, currently S5

Status of previous searches

LIGO-G070353-00-Z

- S3 analysis
 - Analysis and post-processing complete
 - Results reviewed and approved
 - Final report posted on E@H website
- S4 analysis [S4 R2]
 - Analysis and post-processing complete
 - Soon to be reviewed
- First S5 analysis [S5 R1]
 - Analysis complete
 - Post-processing will be similar to S4 R2
- Hierarchical S5 analysis [S5 R2]
 - Started test-run (\sim 3 months)
 - currently working on improving stability & reliability
 - Will be followed by a full 1-year run

Hierarchical Search [S5 R2]: Motivation

LIGO-G070353-00-Z

- Previous analyses return results of a coherent search from different data segments ("stacks")
- Stack-coincidence analysis performed in post-processing
- Sensitivity limited by high effective threshold on stacks (limited by returnable data volume)
- We should do the "coincidence" on the host machines!

Hierarchical search developed by a number of CW members (B. Allen, T. Creighton, D. Hammer, B. Krishnan, B. Machenschalk, G. Mendell, B. Owen, M.A. Papa, R. Prix, X. Siemens, A. Sintes, ...)

Hierarchical Search: Basic algorithm

- Split observation time into N_{stack} "stacks" of duration T_{stack}
- For each sky-position (α, δ) and spindown value (f): compute *F*-statistic for each stack over frequency band Δf
- Combine $\mathcal{F}(f)$ from the stacks using Hough (or StackSlide)
- Use stack-weighting according to noise and beam pattern
- Select candidates from the semi-coherent step
- Return a toplist of N_{max} most significant candidates (currently N_{max} = 10,000)

Sensitivity estimate of different E@H Runs

LIGO-G070353-00-Z

Stage 1: \mathcal{F} -statistic on N_{stack} stacks of T_{stack} Stage 2: coincidence or Hough/StackSlide on stacks (Stage 3: follow-up or upper-limit)

$$\langle h_0 \rangle_{\rm fA}^{\rm fD} \sim \frac{5/2}{\sqrt{\rm MM}} \frac{\rm SNR_1(fA, fD, \mathcal{F}_{\rm th})}{N_{\rm stack}^{1/4} \sqrt{N_{\rm det} T_{\rm stack}}} \sqrt{S_n} \equiv \frac{\sqrt{S_n \cdot \rm Hz}}{\rm sens}$$

RUN	N _{stack}	$T_{\rm stack}$	N _{det}	$2\mathcal{F}_{th}$	on-host	post-P	sens	$\frac{\langle h_0 \rangle_{\text{best}}}{10^{-24}}$
S3 R2	60	10 h	1	25	2-coinc	coinc	7.3	8
S4 R2	17	30 h	1	26*		coinc	8.4	6
S5 R1	28	30 h	1	26*		coinc	9.6	3
S5 R2	84	25 h	2	5.2	Hough	—	63	0.45

The Big Picture

The semi-coherent step

- For a signal mismatched with the demodulation point, the local maximum will lie on a circle in the sky
- The circle in stack *i* is determined by the master-equation

$$f - f_0 = f_0 \frac{\mathbf{V}_i}{c} \cdot (\mathbf{n}_0 - \mathbf{n})$$

 The circles have different orientation for different stacks – this leads to a refinement in the parameter space from using a semicoherent method

