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1 Parameter Estimation Using Power

A periodic gravitational wave signal incident on a gravitational wave detector produces a strain
response of the form,

h(t) = A+F+(ψ, t) cos Φ(t) + A×F×(ψ, t) sin Φ(t), (1)

whereF+ andF× are the antenna-pattern response functions, andΦ is the phase [1].
For a time-baseline≤ 30 minutes we call the Discrete Fourier Transform (DFT) of the data a

Short Fourier Transform (SFT). By using the power in SFTs the PowerFlux method [2] is able to
estimate the square amplitude of a linearly polarized (A2

+ = 0 orA2
× = 0) or circularly polarized

signal (A2
+ = A2

×). The estimated square amplitude can be used as a detection statistic to search
for elliptically polarized signals.

We have tried using the complex SFT amplitudes to estimateA+ andA× based on the methods
given in [1]. This failed to be robust, for example because mismatch can cause complete loss of
signal in one SFT [3]. Instead, using power to estimate the square amplitudes reduces this loss to at
most a60% in any one SFT. Pursing this, we find several generalization of the PowerFlux method,
which we investigate here.

For an SFT, we can treat the frequency and antenna-pattern as constant. Ignoring the mismatch
in frequency (which is unknown in a search), the normalized signal power is,

2|h̃|2

TSFT

= 0.5(A2
+F

2
+ + A2

×F
2
×)TSFT, (2)

whereh̃ is the DFT ofh(t) multiplied by one over the sample rate. From here on it is understood
that power is to be measured in the SFT bin closest to the signal frequency, and thatF+ andF× are
constants evaluated at the midpoint of each SFT.

2 Derivation of the PowerFlux method

Equation (2) represents the expected signal power for an elliptically polarized signal from one SFT.
If we label the SFTs using indexα, and consider a linearly polarized signal withA× = 0, we can
define the noise weighed sum of the square deviations in power as

g =
∑

α

[Pα − 0.5A2
+F

2
+αTSFT]2

S2
α

, (3)
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whereSα is the one-sided power spectral density for the appropriate frequency bin, and

Pα =
2|x̃α|2

TSFT

, (4)

with x̃α the SFT data from the same frequency bin.
A natural way one way to estimateA2

+, analogous toχ2 minimization, is to find the value that
minimizesg. Thus, we need to solve

∂g

∂A2
+

= −
∑

α

(Pα − 0.5A2
+F

2
+αTSFT)F 2

+αTSFT

S2
α

= 0. (5)

Solving forA2
+ gives,

A2
+ = 4

∑
α

F 2
+α

S2
α

|x̃α|2

T 2
SFT

/
∑

α

F 4
+α

S2
α

. (6)

Note that equation (6) is the detection statistic of the PowerFlux method defined in [2], though
the derivation here is different. We call this the PowerFlux Linear (polarization) method. This
search includes a search over values ofψ. It is trivial to generalize this to circular polarization, by
replacingF 2

+α with F 2
+α + F 2

×α in Eq. (3), giving the PowerFlux Circular (polarization) method,
which does not require a search overψ.

3 Generalization to estimateA2
+ andA2

×

The obvious generalization of Eq. (3) to an elliptically polarized signal is to redefineg as

g =
∑

α

[Pα − 0.5(A2
+F

2
+α + A2

×F
2
×α)TSFT]2

S2
α

. (7)

Thus minimizingg with repect toA2
+ andA2

× gives

∂g

∂A2
+

= −
∑

α

[Pα − 0.5(A2
+F

2
+α + A2

×F
2
×α)TSFT]F 2

+αTSFT

S2
α

= 0, (8a)

∂g

∂A2
×

= −
∑

α

[Pα − 0.5(A2
+F

2
+α + A2

×F
2
×α)TSFT]F 2

×αTSFT

S2
α

= 0. (8b)

Solving forA2
+ andA2

× gives

A2
+ =

4

D

[∑
α

F 4
×α

S2
α

∑
α

F 2
+α

S2
α

|x̃α|2

T 2
SFT

−
∑

α

F 2
+αF

2
×α

S2
α

∑
α

F 2
×α

S2
α

|x̃α|2

T 2
SFT

]
, (9a)

A2
× =

4

D

[∑
α

F 4
+α

S2
α

∑
α

F 2
×α

S2
α

|x̃α|2

T 2
SFT

−
∑

α

F 2
+αF

2
×α

S2
α

∑
α

F 2
+α

S2
α

|x̃α|2

T 2
SFT

]
, (9b)

where

D =
∑

α

F 4
+α

S2
α

∑
α

F 4
×α

S2
α

−

(∑
α

F 2
+αF

2
×α

S2
α

)2

. (9c)

page 2 of??



DRAFT
COPY

LIGO-G070407-00

One can use the sum ofA2
+ andA2

× as the detection statistic. This method still has to include
a search over values ofψ. Computationally, it involves computing5/3 as many sums as the basic
PowerFlux Method. We call this method PowerFlux Generalization I.

4 Generalization to estimateA2
+, A2

×, andψ

We can re-writeF+ andF× in terms ofψ and two functions independent ofψ, a andb [1]:

F+(ψ, t) = sin ζ[cos 2ψ a(t) + sin 2ψ b(t)], (10a)

F×(ψ, t) = sin ζ[cos 2ψ b(t)− sin 2ψ a(t)]. (10b)

The normalized signal power can be written as,

2|h̃α|2

TSFT

= 0.5(Aa2
α + Bb2α + Caαbα)TSFT, (11)

where the amplitudesA, B, andC are

A = sin2 ζ(A2
+ cos2 2ψ + A2

× sin2 2ψ), (12a)

B = sin2 ζ(A2
+ sin2 2ψ + A2

× cos2 2ψ), (12b)

C = sin2 ζ(A2
+ − A2

×)2 cos 2ψ sin 2ψ. (12c)

It is easy to invert these equations. Thus, we can redefineg as

g =
∑

α

[Pα − 0.5(Aa2
α + Bb2α + Caαbα)TSFT]2

S2
α

. (13)

Thus minimizingg with respect toA2
+ andA2

× gives

∂g

∂A
= −

∑
α

[Pα − 0.5(Aa2
α + Bb2α + Caαbα)TSFT]a2

αTSFT

S2
α

= 0, (14a)

∂g

∂B
= −

∑
α

[Pα − 0.5(Aa2
α + Bb2α + Caαbα)TSFT]b2αTSFT

S2
α

= 0, (14b)

∂g

∂C
= −

∑
α

[Pα − 0.5(Aa2
α + Bb2α + Caαbα)TSFT]aαbαTSFT

S2
α

= 0. (14c)

Thus, the amplitudesA, B, andC can be found by inverting Eqs. (14). From these the amplitudes
A2

+ andA2
× and polarization angleψ can be found by inverting Eqs. (12). Computationally, this

method involves computing8/3 as many sums as the basic PowerFlux Method, but because the
value forψ no longer has to be searched over (and in the standard PowerFlux search four linear
and one circularly polarization are used) the computational complexity of the search can be less
than that for the basic method. We call this method PowerFlux Generalization II.

5 Comparison of Detection Efficiencies

We have written code that generates fake signals and noise, and analyzed it using the above meth-
ods plus a pure StackSlide sum of the power (see [4]). The results are given in Figures 1 and
2.
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Figure 1: Detection efficiency vs.
the normalized injected amplitude,
h0(TSFT/S)1/2, for a 1% false alarm
rate, whereA+ = 0.5h0(1 + cos2 ι) and
A× = h0 cos ι, and cos ι is the incli-
nation angle. Fake signals were gener-
ated for336 SFTs, equatorial sky posi-
tion (0, π/4), and for random inclina-
tion and polarization, allowing for a fre-
quency mismatch of up to one half of
an SFT bin, and polarization mismatch
of up to π/16. Spline fits are shown.
Errors are≤ 3%. Varying the declina-
tion of the sky position, the ranking of
StackSlide, Gen. PF I, and Gen. PF
II can switch, while PF Circular always
remains the most efficient method.
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Figure 2: The figures show, for
h0(TSFT/S)1/2 = 4 as defined in Fig. 1
and 3000 random signals, a compari-
son of the injected and detected ampli-
tudeA+ for the PowerFlux Linear (po-
larization) method (top left), a compar-
ison of the injected and detected ampli-
tudesA+ andA× for PowerFlux Gen-
eralization I (top right), and a compari-
son of the injected and detected ampli-
tudesA+ andA× and the injected and
detectedψ for PowerFlux Generaliza-
tion II (bottom left and right).
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Figure 3: Larger version of Figure 1: detection efficiency vs. the normalized injected
amplitude,h0(TSFT/S)1/2, for a 1% false alarm rate, whereA+ = 0.5h0(1 + cos2 ι) and
A× = h0 cos ι, andcos ι is the inclination angle. Fake signals were generated for336 SFTs,
equatorial sky position(0, π/4) (Right Ascension = 0 hrs, Declination = 45 degrees), and
for random inclination and polarization, allowing for a frequency mismatch of up to one
half of an SFT bin, and polarization mismatch of up toπ/16. Spline fits are shown. Errors
are≤ 3%. Varying the declination of the sky position, the ranking of StackSlide, Gen. PF
I, and Gen. PF II can switch, while PF Circular always remains the most or nearly most
efficient method.
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Figure 4: Same as Figure 3 for Declination= 0 degrees.
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Figure 5: Same as Figure 3 for Declination= 90 degrees.
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Figure 6: The figures show, forh0(TSFT/S)1/2 = 4 and3000 random signals, a compar-
ison of the injected and detected amplitudeA2

+ for the PowerFlux Linear (polarization)
method (left), and a comparison of the injected and detected amplitudesA2

+ andA2
× for

PowerFlux Generalization I (right).
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Figure 7: The figures show, forh0(TSFT/S)1/2 = 4 and3000 random signals, a compar-
ison of the injected and detected amplitudeA2

+ for the PowerFlux Linear (polarization)
method (left), and a comparison of the injected and detected amplitudesA2

+ = A2
× for the

PowerFlux Circular (polarization) method (right).
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Figure 8: The figures show, forh0(TSFT/S)1/2 = 4 and3000 random signals, a compar-
ison of the injected and detected amplitudesA2

+ andA2
× and the injected and detectedψ

for PowerFlux Generalization II (left and right respectively).
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