

Searching for gravitational wave bursts with the new global detector network

Shourov K. Chatterji INFN Sezioni di Roma / Caltech LIGO Laboratory for the LIGO Scientific and Virgo Collaborations

7th Eduardo Amaldi Conference on Gravitational Waves 2007 July 8-14 Sydney, Australia

LIGO-G070411-00-Z

Overview

- Outline
 - Benefits of joint data analysis
 - Agreement on joint data analysis
 - Trial analysis using real data
 - Coherent analysis methods
 - Sky position and signal recovery
 - Summary and outlook
- This talk focuses on the search for gravitational-wave bursts with unknown waveform
- See the talk by G. Guidi "First LSC-Virgo joint GW search for binary neutron stars" later this afternoon for information on another joint data analysis effort.

Benefits of joint data analysis

Benefits of a global network

Average response to signals with random linear polarization in Earth fixed coordinates LIGO-G070411-00-Z 7th Amaldi Conference, Sydney, Australia, 2007 July 8-14

Benefits of a global network

• Improved duty cycle

Cumulative observation time of the LIGO/Virgo network since 2007 May 18

LIGO-G070411-00-Z

Benefits of a global network

- Increased signal to noise ratio
 - Coherently sum signals from multiple detectors
- Improved detection confidence
 - Multi-detector coincidence greatly reduces false rate
 - Coherent consistency tests can differentiate between gravitational-wave signals and instrumental anomalies
- Permits improved directional searches
 - Gamma ray burst progenitors
 - Supernovae
- Improved source reconstruction
 - "Inverse problem" requires 3 non-aligned detectors
 - Provides sky position and both polarizations of waveform
 - Permits comparison with theory
 - This is where the science is!
- Shared best practices
 - Learn from each other's approaches

LIGO-G070411-00-Z

Agreement on joint data analysis

Agreement on joint data analysis

- Recognizing the benefits of joint data analysis, the LIGO Scientific and Virgo collaborations have entered into an agreement to jointly analyze data from the GEO, LIGO, and Virgo detectors
- Sharing of data started in May 2007 when Virgo commenced its first long science run in coordination with LIGO's fifth science run
- A joint run plan committee is coordinating detector operation and commissioning schedules to improve the prospects for detection
- Initial joint data analysis working group meeting since June 2004
- Performed joint data analysis exercises with simulated and small amounts of real data to demonstrate benefits and understand technical issues
- Full joint data analysis meetings are now taking place
- Performed trial end-to-end analysis of a small set of real data

LIGO-G070411-00-Z

Trial analysis using real data

"Project 2b"

- "Proof of principle" analysis using real detector data
- ~68 hours of coincident data from September 2006
 - LIGO's 5th science run (S5)
 - Virgo's 1st weekly science run (WSR1)
- Includes data from all 5 LSC and Virgo detectors
 - GEO600 (G1)
 - Hanford 4km (H1)
 Virgo (V1)
- Livingston (L1)

 - Hanford 2km (H2)
- Data from each observatory shifted in time by a different secret amount
- Apply both coincident and coherent search methods
- Perform "end to end" analysis lacksquare
- Examine sensitivity to a variety of simulated burst signals
- Identify options and issues for the upcoming joint analysis

LIGO-G070411-00-Z

Coincident Power Filter analysis

- Applied the Power Filter burst search algorithm described in *G.M. Guidi et al 2004 Class. Quantum Grav.* **21** S815-S820
- Produces whitened time-frequency spectrograms at multiple timefrequency scales
- Identifies statistically significant regions of excess signal power
- Tests for temporal coincidence of events between detectors within the expected speed of light travel time
- Considered union of all double coincident triggers as described in *F. Beauville, et al., in preparation, arXiV:gr-qc/0701026*

	HLV	HL	HV	LV	$\mathrm{HL} \cup \mathrm{HV} \cup \mathrm{LV}$	\mathbf{i}
max efficiency	19%	41%	22%	22%	60%	
mean efficiency	12%	31%	13%	15%	41%	

- Sensitivity of the search characterized by injecting sinusoidal Gaussians bursts with varying center frequencies and amplitudes.
- Individual detector thresholds tuned to simultaneously maximize the detection efficiency for all injected signals at a 1μ Hz false rate

Analyzed data

Coincident analysis focused only on three detectors

LIGO-G070411-00-Z

Analyzed frequency range

• Coincident analysis focused only on 800 to 2000 Hz.

LIGO-G070411-00-Z

Pairwise coincident sensitivity

Comparison of LIGO only (H1L1) and LIGO/Virgo (H1L1+H1V1+L1V1) sensitivities

LIGO-G070411-00-Z

Pairwise coincident sensitivities

Comparison of LIGO only (H1L1) and LIGO/Virgo (H1L1+H1V1+L1V1) sensitivities

LIGO-G070411-00-Z

Coherent analysis methods

Related talks and posters at this conference:

- Coherent waveburst algorithm for gravitational wave searches (S. Klimenko, I. Yakushin, A. Mercer, and G. Mitselmakher)
- Robust Bayesian detection of unmodeled bursts of gravitational waves (A. Searle, S. Chatterji, P. Sutton, M. Tinto)

Coherent analysis methods

- Naturally handles arbitrary networks of detectors
- Analysis repeated as a function of frequency and sky position
- Produces significance and consistency sky maps

٠

٠

Simulated coherent consistency test

Test the coherent null stream for consistency with detector noise as a function of sky position

Simulated (A1B3G3) supernovae signal from Dimmelmeier *et al.* A&A 393 (2002) 523 Injected with SNR of 20 into simulated design sensitivity H1, L1, and V1 detector noise

Simulated coherent consistency test

Consistency tests useful for distinguishing coincident detector glitches from real signals

Simulated (A1B3G3) supernovae signal from Dimmelmeier *et al.* A&A 393 (2002) 523 Injected into simulated design sensitivity H1, L1, and V1 detector noise

LIGO-G070411-00-Z

Sky position and signal recovery

Related talks and posters at this conference:

• Reconstruction of burst signals with networks of gravitational wave detectors (S. Klimenko, I. Yakushin, A. Mercer, S. Mohanty, and G. Mitselmakher)

Sky position recovery

Rings of constant time of arrival

delay between detectors

- Noise fluctuations cause coherent methods to identify sky positions along rings of constant Δt
- Timing based sky position can provide more accurate results
- Simulated timing based recovery of 1 ms • Gaussian signals yields ~1 degree accuracy

Source location

LV

Mirror image

source location

HV

HL

Simulated waveform recovery

Given a best guess sky position, estimate the signal **h** from $\mathbf{x} = \mathbf{F}\mathbf{h} + \mathbf{n}$ by identifying the psuedo-inverse **R** such that $\mathbf{R}\mathbf{F} = \mathbf{I}$.

LIGO-G070411-00-Z

⁷th Amaldi Conference, Sydney, Australia, 2007 July 8-14

Summary and outlook

- The LIGO Scientific and Virgo collaborations are now jointly analyzing data from a network of 5 interferometric detectors
- Coincident and coherent analysis tools are now available to take advantage of data from networks of detectors
- The union of pairwise coincident triggers from the LIGO/Virgo network provides an improvement in detection efficiency and coverage over the LIGO only network
- We expect even greater benefit at the current Virgo sensitivity
- Coherent methods naturally handle arbitrary networks of detectors and provide increased detection confidence, consistency tests, and parameter estimation.
- Coherent methods applied to trial data, but not ready to present
- Coincident and coherent analysis methods complement each other and can be used as part of a hierarchical search
- We are ready to start analyzing joint GEO, LIGO, and Virgo data
- Already started joint search for gravitational waves associated with gamma ray bursts

LIGO-G070411-00-Z

Current sensitivities

LIGO-G070411-00-Z