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Bayesian inference

« Bayesian inference tells us the unigue way to
change the plausibility we assign hypotheses
when we get new evidence

— Therefore, we need to assign plausibilities to the
hypotheses prior to receiving the evidence

* Priors are criticised as subjective from the
nerspective of the popular Frequentist
paradigm

— Bayesians note that Frequentist statistics are not

free of priors; their priors are merely implicit,
unexamined and sometimes contradict intent




The detection problem

e Things about the e Things about the
observatories we gravitational wave we
assert want to learn
— Number — EXxistence
— Locations — Time of arrival
— Antenna patterns — Direction of origin
— Noise spectra — Waveform
— Sampling rates * We need priors

— Observation time distributions for these



Toy model

« N white detectors each make a .~
single measurement as a
postulated strain h from
direction (6, @) sweeps over
them
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Uncontroversial priors

 How plausible is it that a gravitational
wave Is present?

— This follows from the predicted
" (Hsi nal)

event rate and is comparable to g\ sia
Frequentist threshold P(H )

e \When and from where?

— Uniform over observation time and sky
direction p(0,¢| Hy, )= sin@

<<1




Waveform prior

A plausibility distribution on the space of
all possible strain waveforms

 Example: a population of white noise
bursts with power-law distributed energies
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Marginalising away strain

* We can analytically marginalize away

p(sittaie)= [ .dh p(x|h)p(h|o)

dn (2) %0 7 exp- 2 [ FY (x-Fh)-o ']
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Result

 We have to numerically marginalize over
other parameters

S|gnal j _[ j |(9 ¢ (T)dO'd¢d(9

— (Not very expensive)

 ...to get the Bayesian odds ratio

p(HsignaI | X) _ p(Hsignal ) p(X | Hsignal )
p(Hnoise | X) p(Hnoise) p(X | Hnoise )




Bayesian “sky map”
p(0,61%) P )p0.8)] p(o)p(x10.,0)do
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Comparing with Gursel-Tinto

e “Optimal statistic is...”
exp—%xTF(FTF)_lFTx
— Y. Gursel and M. Tinto, PRD 40, 3884 (1989)
— Implemented as xpipeline (ANU/Caltech/JPL)

 Bayesian sky map limits to this for
plo)=68(c~a), p(6.4)e=(detC)"

e ey im0k HE )




Odd priors

o Gursel-Tinto is related ¢ The priors aren’t

to a Bayesian “Incorrect”, but...

analysis with odd * They certainly don’t

Priors reflect Gursel and

— Very (very) large Tinto’s beliefs about
signal energy! the universe

— Source directions
distributed according
to network sensitivity!

e These are consistent
with GT’s observed
fallure modes
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Other comparisons

 Soft constraint  All these techniques
— S Klimekno et al, PRD work to varying
72, 122002 (2005); degrees...
Coherent WaveBurst — Enough evidence can
(l_JF_L_) o always overwhelm a
— Limiting case of infinitely prior
small signals, non- . :
uniform direction prior The mpst effective
. RN analysis Is the one
« Tikhonov regularization whose priors best
— M Rakhmanov, CQG 23 '
19 (2006) S673-S685: reﬂecg realltt)y o
RIDGE (UTB/PennState) — (and can be computed;

the Bayesian analysis
cost is comparable to
Gursel-Tinto, depending
on choice of strain prior)

— Looks for signals of a
particular energy, non-
uniform direction prior



Robust noise model

* In practice, coherent methods are easily fooled by
Incoherent glltches
waves from directions of poor

/ \ ‘“ sensitivity
SIMULATED DA

— The analysis can only explain any excess power as a
gravitational wave

— S Chatterji et al, Phys. Rev. D 74, 082005 (2006)
demonstrates and proposes a more robust statistic

Gursel-Tinto often mistakes
glitches (shown) for gravitational
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Robust noise model

 \We can make a more realistic
noise model where the detectors
occasionally glitch
— This requires a glitch model similar
to the signal model, with physically

motivated priors on glitch
waveforms and occurrence

P(X| H o) = HN p(HqUiet)exp —x; N p<Hintch )eXp —x! )

= J2x 2 o N27 20,

— Easily integrated into Bayesian
analysis at little extra cost




Summary

 The Bayesian approach to bursts

— Supersedes several previously proposed
methods

— Necessarily outperforms those methods
 Priors target more reasonable signals

— Is an optimal test uniquely defined by making
explicit assertions about the instruments and
bursts

— |Is computationally tractable

o Cost is comparable to existing methods for comparable
signal models

—~'Can‘readily incorptrate giitch models for



Supplementary material



Toy model

N white detectors each make a measurement

as a postulated strain h from direction (6, ®)
sweeps over them

q| [F(0.¢) F0.9)
|| 0.0) F09) ) 4|

 |f no wave Is present, the
measurements are normally
distributed around 0

p(X| H,y) = (27) " exp-gx X




Towards a signal hypothesis

« If the wave Is present, the measurements
are normally distributed around the

"ESPONRGx—Fh |, )
= (27) " exp— (xFhY (xFh)

« Unfortunately we don’t know the incoming
strain, so this is not directly useful
— Gursel & Tinto’s original insight was that, as
the response is constrained to span F, any
function of (null F)’x was independent of the
unknown h

— The Bayesian analysis instead uses a prior
on h




Prior expectations of strain

 For detection (not characterization) we want to
marginalize away the nuisance parameter h

p(X | Hsignal ) = _‘.j:jj:p(x B Fh | Hnoise )p(h | Hsignal )dh+dhx

* To do so, we need to specify how likely we think
particular strains are to occur

— A normal distribution is a conservative
choice that also lets us solve the integrs

_ 1 _
p(h | Hsignal): (272-) 1 exp_EGhthh

— We must specify the expected scaleZty)
of the strain



Explicit signal hypothesis

= (22)""*(detC)™'* exp- % x"C™'x

where C* = 1 -F(F'F + ;21 ) 'F’

« By making a weak assumption about the
strain we obtain an explicit signal
hypothesis



Bayesian odds ratio

=T

 We have a prior expectation that signals are

'\

EENEN

Infrequent
p(Hsignal ) << p(Hnoise) ii%‘.
* We can directly compute the e

T |
PR

relative plausibllities of the

competing hypotheses
p(Hsignal | X) p(Hsignal) p(X | Hsignal )
noise) p(X | Hnoise)

p(Hnoise |X) B p(H )
P Hsignal -1/2 1 T -1
= detC ——x {C -1
p(Hnoise ) ( ) ) exp 2 ’ ( )X
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Relationship to other methods

Very large signal prior is like Gursel-Tinto
o, >> F* C =1 ~F(F'F) F’

Very small signal prior is like soft constraint
o, <<F*', Cl—l~o/FF'

Physical meaning for Tikhonov regularizer
Cl-1=F(F'F+5,2) F"

Previous methods are like Bayesian searches

with poorly chosen priors

— Their prior expectations are unexamined, not
absent!



Reverse-engineering priors

e Gursel-Tinto method:

— Y. Gursel and M. Tinto, PRD 40, 3884 (1989);
xpipeline (ANU/Caltech/JPL)

— “Optimal statistic is null energy (I -F(F'F)™F")x

- Bayesian large; sigfat ipit

— GT is limiting case of expecting infinitely large
signals (from the network’s least sensitive
directions!)

 These are consistent with GT’s observed failure modes

 These priors are not wrong, but they certainly
weren’t Gursel and Tinto’s intent



Gursel-Tinto for HLV




In p(0, @A X, 6, Hjgng) TOr HLV
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Advanced noise models

 None of the above methods are good at
rejecting ‘glitches’
— The models only have one way excess
energy appears in a detector: a gravitational

wave
« Generalize noise model for greater 7
robustness

— Consider a different kind of signal:
iInfrequent uncorrelated bursts of
noise

— The Bayesian analysis can now
prefer this hypothésis when appropriate




Outcome

* An expression to enable us to compute the
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plausibility that a gravitational wave Is
present

— “Sky maps” produced by previous methods
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