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Abstract

The parameter-space metric describes the local distance
structure of a template family for gravitational-wave (GW)
signals. This is a fundamental building block for construct-
ing efficient template banks. Here we focus on the coher-
ent metric for continuous GWs, e.g. from spinning neutron
stars (ground-based detectors) or from white-dwarf binaries
(LISA). We show that this metric is approximately flat, and
we discuss the relation of the local metric structure to the
global “circles in the sky” structure in parameter space.

Continuous Gravitational Waves

Figure 1: Sources of continuous GWs. Left: white-dwarf
binary systems (LISA, f ∼ mHz). Right: spinning deformed
neutron stars (LIGO/GEO/Virgo etc, f ∼ 100 Hz).

A continuous GW signal s(t) with intrinsic frequency f (τ ),
located at longitude α and latitude δ is characterized by
its Doppler parameters θ = {α, δ, f , ḟ , . . .} and amplitude
parameters A = {h0, cos ι, ψ, φ0}. A reparametrization
{Aµ}4

µ=1 of the amplitude parameters allows the factoriza-
tion of the signal

s(t;A, θ) =

4∑
µ=1

Aµ hµ(t; θ) . (1)

The optimal detection statistic is the likelihood ratio Λ:

ln Λ(x;A, θ) ≡ (x‖s)− 1

2
(s‖s) , (2)

where x(t) is the measured strain data from the detector,
and (.‖.) is the (Wiener) matched-filtering scalar product.
By analytically maximizing ln Λ over the unknown Aµ, we
obtain the “F-statistic” [4]:

2F(x; θ) =

4∑
µ,ν=1

(
x‖hµ

)
Mµν (x‖hν) , (3)

where Mµν is the matrix inverse of Mµν ≡
(
hµ‖hν

)
.

+ Using the F-statistic, we only need to search over the
unknown Doppler-parameters θ = {α, δ, f , ḟ , . . .}.

Parameter-space Metric for Continuous GWs

In the presence of a signal (1) with parameters {A, θ}, the
expectation value of 2F , targeting an offset Doppler posi-
tion θt = θ + ∆θ is

E [2F(x; θt)] = 4 + SNR2(A, θ; ∆θ) , (4)

where SNR is the “signal-to-noise ratio”. The SNR has a
maximum SNR(A, θ; 0) when exactly targeting the signal.
We define the mismatch m as the relative loss of SNR2 due
to the Doppler offset ∆θ:

m(A, θ; ∆θ) ≡ SNR2(0)− SNR2(∆θ)

SNR2(0)

= gij(A, θ) ∆θi∆θj +O(∆θ3) , (5)

defining the metric tensor gij (first introduced in [1, 2]) of
the Doppler space θ. As shown in [3], for long observa-
tion times T � 1 day the Doppler metric gij(A, θ) can be
approximated by the “orbital metric” gorb

ij (θ), defined as

gorb
ij (θ) ≡ 〈∂iφ ∂jφ〉 − 〈∂iφ〉〈∂jφ〉 ≡

[
∂iφ, ∂jφ

]
, (6)

where ∂i ≡ ∂/∂θi, and the time-average 〈Q〉 ≡ 1
T

∫ T
0 Q(t) dt.

The phase φ(t; θ) in this expression is the GW phase at the
detector, neglecting the spin-motion of the Earth, namely

φ(t; θ)

2π
= f [t + r̃orb(t) · ~n] +

1

2
ḟ [t + r̃orb(t) · ~n]2 + . . . , (7)

where r̃orb(t) is the light-travel time between the solar-
system barycenter (SBB) and the Earth (or LISA), and ~n is
the unit-vector pointing to the sky-position α, δ of the signal
(see Fig. 2).
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Figure 2: Orbital motion of the detector (’Det’) in the eclip-
tic plane (neglecting spin-motion of the earth) and Doppler
evolution of the GW-phase φ(t;~n) (constant along wave-
fronts) for a signal from sky-direction ~n.

The parameter-space metric is the local description of the
global parameter-space structure. For moderately short ob-
servation times T � 1 year, the global parameter-space
structure can be approximately described [5] by the “circles
in the sky”:

f
(
1 + ~β · ~n

)
= const. , (8)

where ~β is the average orbital velocity (in units of c) during
the observation time. Fig. 3 shows the circles in the sky and
the metric ellipses for fixed f in equatorial coordinates α, δ,
which are commonly used for ground-based detectors.
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Figure 3: Skymap of “Circles in the Sky” (8) and metric
(iso-mismatch) ellipses for fixed spin-parameters f, ḟ , . . ..
The ellipses are “needle”-like and tangential to the global
structure. The orientation and size of the ellipses depend
on the sky position α, δ.

The same global and local parameter-space structure is il-
lustrated in Fig. 4, translated into ecliptic coordinates λ, β.
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Figure 4: Skymap of “Circles in the Sky” (8) and met-
ric (iso-mismatch) ellipses as shown in Fig. 3, translated
into ecliptic coordinates λ, β. (The apparent “deformation”
of the metric ellipses is an artifact of their finite size and the
coordinates-transformation.) The orientation and size of the
ellipses still depends on the sky position λ, β.

(Approximate) Flatness of the Orbital Metric

As shown in [4], the phase (7) can be approximated as

φ(t; θ)

2π
≈ f r̃orb(t) · ~n + f t +

1

2
ḟ t2 + . . . , (9)

and introducing new variables for the sky-position α, δ:

kx ≡ −2πf nx , ky ≡ −2πf ny , (10)

where nx, ny are the components of ~n in the ecliptic plane.
Because of ~n2 = 1, the range of {kx, ky} is restricted to the
disc kx

2 + ky
2 ≤ (2πf )2. In these new Doppler-variables

Θ ≡ {kx, ky, f , ḟ , . . .}, the variation of the orbital phase (9)
can be approximated as

dφ(t; Θ) ≈ r̃xorb(t) dkx+r̃
y
orb(t) dky+2πt df+πt2 dḟ+. . . , (11)

and using this the orbital metric (6) is found as

kx ky f . . .

gorb ≈



[
r̃xorb, r̃

x
orb

]
,

[
r̃xorb, r̃

y
orb

]
,

[
r̃xorb, 2π t

]
, . . .[

r̃
y
orb, r̃

x
orb

]
,

[
r̃
y
orb, r̃

y
orb

]
,

[
r̃
y
orb, 2π t

]
, . . .[

2π t, r̃xorb

]
,

[
2π t, r̃

y
orb

]
, [2π t, 2π t] , . . .

... ... ... . . .

 , (12)

which does not depend on the Doppler point Θ!
+ this metric is explicitly seen to be flat. �
Fig. 5 shows the iso-mismatch ellipses of the flat metric (12)
(for fixed f, ḟ , . . .) and the “circles in the sky” (8), in sky-
coordinates nx, ny (which are proportional to kx, ky (10)).
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Figure 5: With {nx, ny} in the ecliptic plane as sky-
coordinates, the “circles in the sky” reduce to parallel
straight lines. The iso-mismatch ellipses of the orbital met-
ric (12) are independent of sky-position nx, ny and parallel
to the global circles.

Note that the choice of kx, ky (10) instead of nx, ny as sky
coordinates has the advantage of rendering the metric (12)
independent of the frequency f . With this choice the metric
is constant, but the parameter-space corresponding to the
sky grows with frequency, as kx

2 + ky
2 ≤ (2πf )2: the pa-

rameter space has the form of a cone with constant metric.
Alternatively one could use {nx, ny} as sky-coordinates, re-
sulting in a fixed “sky” nx2 +ny

2 ≤ 1 and a parameter-space
in the form of a cylinder, but with a metric that scales with
frequency. In both cases the number of templates will there-
fore grow as ∝ f2, as expected.

Summary

We have shown that a series of suitable approximations
together with the choice of the ecliptic components kx, ky
of the “wave-vector” (10) as “sky”-coordinates renders the
metric constant over the whole parameter space. This is
an important step for the construction of more efficient tem-
plate banks for the search for continuous GWs, such as
emitted from spinning neutron stars or white-dwarf binary
systems.
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