

Mesa Beams

John Miller University of Glasgow Caltech, 7th August 2007

Preface

- Introduction
- Experiment
 - Past, present, future
 - locking
 - alignment
 - coupled cavities
- Theory
 - Thermal noise*
 - TCS
- Other beams
- Conclusions

A mesa. Look Out Point in Mesa Verde National Park, CO.

*preliminary results, remains

to be checked John Miller – Mesa Beams

3

LIGO – G070560-00-R

7 Aug 2007

Noise

AdvLIGO Noise Curve: P_{in} = 125.0 W

7 Aug 2007

John Miller – Mesa Beams

Thermal noise

- Brownian
 - internal friction
 - impurities, dislocation of atoms
- Thermoelastic
 - random heat flow in substrate and coating
 - non-null coefficient of thermal expansion
 - thermodynamic fluctuations result in displacements

 refractive index changes with temperature

7 Aug 2007

John Miller – Mesa Beams

Motivation

Sensitive to test mass position <u>as</u> <u>sensed by</u> <u>laser</u>

• Steep gradient provides a poor spatial avg.

- For Gaussian Beams (GB) bigger is better
 - diffraction loss

6

7 Aug 2007

John Miller – Mesa Beams

Ideal beam

• Not really a valid picture for finite masses

7 Aug 2007

John Miller – Mesa Beams

7

How to make a mesa beam (MB)

7 Aug 2007

John Miller – Mesa Beams

Mesa beam/MexHat Mirrors

•Also Hyperboloidal, Bessel & Laguerre-Gauss beams amongst others

7 Aug 2007

John Miller – Mesa Beams

9

Mirror Construction

- Two step process
- Step 1
 - Rotation gives rough shape
- 500 nm/mm
 - remember this number for later

7 Aug 2007

John Miller – Mesa Beams

Mirror Construction

- Stage 2
- Atomic pencil

 LIGO sized optics are easy

MH Coating

 Before corrective coating

7 Aug 2007

John Miller – Mesa Beams

12

Thermal noise reduction

Noise Source	Fused Silica (34x20cm)
Coating Brownian	~1.9
Substrate Brownian	~1.6
Coating Thermoelastic	~1.9
Substrate Thermoelastic	~2.2

 Ratio of displacement noise Gaussian/Mesa in mHz^{-1/2}

 Single fused silica test mass

 Conclusion....noise down by x2

7 Aug 2007

John Miller – Mesa Beams

Idea

 Reduce the impact of mirror thermal noise in advanced detectors by reshaping the light beams and mirrors in the arm cavities

7 Aug 2007

John Miller – Mesa Beams

The experiment

• Like an 'arm' cavity

Transforms GB to MB

15

7 Aug 2007

John Miller – Mesa Beams

Our experiment

- Rigid, suspended, FP cavity
- Folded once
- Alignment controlled by PZTs
- Vacuum possible /

3.657 m

7 Aug 2007

John Miller – Mesa Beams

Our experiment

7 Aug 2007

Goals

- Resonate mesa beam
- Obtain error signal lock
- Measure tilt sensitivity
- Study alignment
- Coupled cavities

7 Aug 2007

John Miller – Mesa Beams

Fundamental

John Miller – Mesa Beams

MH mirror map

7 Aug 2007

John Miller – Mesa Beams

MH mirror map

7 Aug 2007

John Miller – Mesa Beams

'Flat' mirror map

Thanks to GariLynn

Our cavity has two flat mirrors in addition to Mexican hat

7 Aug 2007

John Miller – Mesa Beams

Tilts of Spherical Mirrors

 Tilts of spherical mirrors translate optical axis

7 Aug 2007

John Miller – Mesa Beams

Tilt sensitivity

- Measure max tilt using lock in detection
- Use chopper and secondary laser to align and capture beam at correct tilt

7 Aug 2007

John Miller – Mesa Beams

Tilt sensitivity - results

7 Aug 2007

John Miller – Mesa Beams

Tilt sensitivity - results

Locking and Alignment

 Pound, Drever, Hall locking

 done, not yet optimised

- Wavefront sensing
 - ready to go
 - what about higher order modes?

7 Aug 2007

John Miller – Mesa Beams

Higher order modes

- Odd contribution upon mirror tilts is just like HG_{01/10}
- 'Hermite' and 'Laguerre' families as for GB

7 Aug 2007

John Miller – Mesa Beams

Gaussian?

• LG_{10} fit

7 Aug 2007

John Miller – Mesa Beams

Experimental work

Lab closed at present 30 7 Aug 2007

John Miller – Mesa Beams

Future work - coupled cavity

• 3-mirror coupled system

- mechanics
- simulation and design
- fields, coupling, alignment

- locking
 - single side band
 - amplitude modulation
 - phase modulation
 - sub-carrier

7 Aug 2007

32

7 Aug 2007

John Miller – Mesa Beams

Tilt Instability

- Serious tilt instability for nearly flat cavity (Sidles, Sigg)
 - Similar to Gaussian beam cavity

- Problem is mitigated by nearly concentric cavities
- Ratio of torques for concentric mesa (CM) and concentric Gaussian (CG) cavities

7 Aug 2007

John Miller – Mesa Beams

Concentric cavity

- Flat mirrors Add MH profile to flat substrate
- Concentric mirrors Subtract MH profile from spherical substrate (gr-qc/0409083)

7 Aug 2007

John Miller – Mesa Beams

Concentric cavities

• Mirror profile must not be as steep as the maximum resolvable slope

John Miller – Mesa Beams

Possible developments

- Concentric MH cavity possible if $ROC \ge 40$ m.
- Circa 150 m. for full test cavity
- Independently suspended/controlled optics
 - Experience of injection systems
 - Noise
 - ideal intermediate step before implementation in a full-scale IFO
- Test bed for all 'exotic' beams see later

7 Aug 2007

Thermal effects

- Study deformation of arm cavity mode with absorbed power
 - power limit for mesa beams?
- Thermal noise implications
- Thermal compensation system (TCS) thoughts
- Model
 - flat-flat, mesa, AdLIGO cavity
 - no substrate absorption.
 - 5x less power absorbed vs. coating
 - no lensing
 - input beam fixed
 - instant response
- Static FFT model and Mathematica

Thanks to Hiro

37

7 Aug 2007

John Miller – Mesa Beams

AdLIGO TCS

Heating - Gaussian

- For Gaussian beam mirrors become less concave and spot size goes from 6 to ~5.4cm
- Total thermal noise increases by ~11%

Thermoelastic deformation for AdvLIGO

$$P_{circ} = 850 kW,$$

Coating absorption=0.5ppm

7 Aug 2007

John Miller – Mesa Beams

Heating - Mesa

Heating - mesa

7 Aug 2007

John Miller – Mesa Beams

MH thermal noise

Semi analytical model – numerical integrals

Cavity	Mesa				
Coating Absorption (ppm)	0	0.5	1	1.5	2.5
Substrate Brownian $\times 10^{21} \frac{\sqrt{\text{HZ}}}{m}$	2.09	1.97	1.90	1.84	1.77
Substrate TE $\times 10^{22} \frac{\sqrt{\text{HZ}}}{m}$	0.71	0.68	0.68	0.68	0.68
Coating Brownian $\times 10^{21} \frac{\sqrt{\text{HZ}}}{m}$	4.19	3.96	3.84	3.76	3.65
Coating TE $\times 10^{21} \frac{\sqrt{\text{HZ}}}{m}$	1.18	1.11	1.06	1.04	1.00
Equivalent Strain $\times 10^{24} \frac{\sqrt{\text{HZ}}}{m}$	2.41	2.28	2.21	2.16	2.09

- Noise goes DOWN with increased absorption!
- To be checked by FEM
- Results are surprising but similar has been seen
 before...

41

7 Aug 2007

John Miller – Mesa Beams

MH losses

Other things discovered during this study

Cavity	Coating Absorption	Cavity Gain	Diffraction Loss	Mode Matching Loss
	ppm		ppm	ppm
Mesa	0	744	9.36	149.39
	0.5	719	19.72	220.33
	1	696	21.21	289.02
	1.5	679	12.77	352.08
	2.5	643	18.00	456.95

- Insertion (mode-matching) loss lower than expected
 - always good news

- Diffraction loss higher
 - wide parameter space for tuning

7 Aug 2007

TCS Strategy

- Make 'bad' mirrors which achieve the correct figure at operating power
- Turned off for science mode no noise injected
- Need to know optics very well single point solution

TCS Gaussian

7 Aug 2007

John Miller – Mesa Beams

TCS Mesa

7 Aug 2007

John Miller – Mesa Beams

Enhanced AdvLIGO+ II

• Mesa beam arms - crude model

Enhanced AdvLIGO+ II

- h noise down by x1.8 @100Hz
- NS/NS range

 170 → 205 Mpc
- BH/BH range

 990 → 1143 Mpc
- Stochastic Ω_{GW} - 2.34e-9 \rightarrow 1.98e-9
- Event rate
 Up by ~1.75

Here we ignore other possible developments

Materials, Coatings, Cryogenics

Squeezing, QND

etc

7 Aug 2007

John Miller – Mesa Beams

Pros

Cons

- Reduce impact of thermal noise
- Less susceptible to Sidles-Sigg instabilities
- Good coupling to Gaussian

Increase range and detection rate

- Can't do small mirrors (yet)
- 9.4cm waist GB in recycling cavity
- Slightly tighter tolerances
 - figure error x~2
 - − tilt x~3

7 Aug 2007

John Miller – Mesa Beams

Other beams – LG₅₅

Other beams - hyperboloidal

PHYSICAL REVIEW D 74, 082003 (2006)

New family of light beams and mirror shapes for future LIGO interferometers

Mihai Bondarescu^{1,*} and Kip S. Thorne²

¹High Energy Physics, California Institute of Technology, Pasadena, California 91125, USA ²Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125, USA (Received 21 September 2004; revised manuscript received 16 August 2006; published 9 October 2006)

LIGO – G070560-00-R

7 Aug 2007

John Miller – Mesa Beams

Other beams - hyperboloidal

7 Aug 2007

John Miller – Mesa Beams

Other beams - Conical

Other beams – fully optimised

Perspectives on Beam-Shaping Optimization for Thermal-Noise Reduction in Advanced Gravitational-Wave Interferometric Detectors: Bounds, Profiles, and Critical Parameters

Vincenzo Pierro, Vincenzo Galdi,^{*} Giuseppe Castaldi, and Innocenzo M. Pinto

Waves Group, Department of Engineering,

University of Sannio,

I-82100 Benevento, Italy

Juri Agresti and Riccardo DeSalvo

LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA

7 Aug 2007

John Miller – Mesa Beams

Other beams – fully optimised

- Optimisation is difficult – done for single noise sources
- Realistic constraints makes large difference
- MB non optimal up to x3 better achievable

7 Aug 2007

John Miller

Conclusions

- Mesa beams predicted reduce thermal noise
- Built experiment to study

 Goals
 - resonate beam
 - lock
 - cf. theory
 - alignment
 - coupled system

Thermal noise characteristics interesting

?

?

- M. G. Tarallo, J. Miller et. al., "Generation of a flat-top laser beam for gravitational-wave detectors by means of a non-spherical Fabry-Perot resonator". App. Opt., doc. ID 80265 (posted 13 July 2007, in press).
 - Vol 46, No. 26, 9/10/07

7 Aug 2007

John Miller – Mesa Beams

With lots of help from

- Rich Abbot
- Rana Adikhari
- Juri Agresti
- GariLynn Billingsley
- Livia Cerullo
- Erika D'Ambrosio
- Riccardo DeSalvo
- Eric Gustafson

- Norna Robertson
- Zeb Rocklin
- Sheila Rowan
- Mike Smith
- Ken Strain
- Marco Tarallo
- Phil Willems
- Hiro Yamamoto
- et al

CARNEGIE TRUST